Участник:D1v1nation/TR — различия между версиями
(→Псевдокод) |
|||
Строка 55: | Строка 55: | ||
'''for''' <tex> b \in V</tex> | '''for''' <tex> b \in V</tex> | ||
'''for''' <tex> c \in V</tex> | '''for''' <tex> c \in V</tex> | ||
− | '''if''' | + | '''if''' (<tex> \langle a, b \rangle \in E </tex>) '''and''' (<tex> \langle b, c \rangle \in E </tex>) '''and''' (<tex> \langle a, c \rangle \in E </tex>) |
<tex>E^- = E^- \setminus \{ \langle a, c \rangle \}</tex> | <tex>E^- = E^- \setminus \{ \langle a, c \rangle \}</tex> | ||
'''return''' <tex>E^-</tex> | '''return''' <tex>E^-</tex> |
Версия 04:16, 15 июня 2016
Определение: |
Транзитивным остовом (transitive reduction) отношения на множестве называется минимальное отношение на такое, что транзитивное замыкание равно транзитивному замыканию . |
Содержание
Алгоритм построения для антисимметричных отношений
Определения и обозначения
Для удобства представим отношение в виде графа:
. Его транзитивным остовом будет граф .Введём несколько обозначений:
- — в графе есть ребро из вершины в ;
- — в графе есть путь (возможно, рёберно пустой) из вершины в ;
- — в графе есть рёберно непустой путь из вершины в .
Также введём определение транзитивного замыкания в терминах теории графов:
Определение: |
Транзитивным замыканием графа | называется граф , где .
Теоретическое обоснование алгоритма
Утверждение: |
Граф ацикличен, то есть в нём выполняется следующее:
. |
От противного: пусть | . По антисимметричности исходного отношения получаем , что противоречит предположению.
Докажем теорему, из которой следует алгоритм.
Теорема: |
Пусть . Тогда |
Доказательство: |
Пусть уже построен. Пусть . Тогда (так как иначе удаление ребра из приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова .Пусть — вершина, для которой выполняется . Докажем, что , от противного. Пусть . ацикличен, поэтому . Поскольку , верно . Поскольку ацикличен, путь из в не может содержать ребра , аналогично путь из в не может содержать . Поэтому в существует путь из в , не содержащий в себе ребро , значит, удаление из не изменит транзитивное замыкание, что противоречит условию минимальности . Поэтому . Поскольку , существует такая вершина , что , что приводит к выводу, что .
Предположим, что и . Докажем, что , от противного. Предположим, что . Поскольку ацикличен, и поэтому . Поскольку , существует вершина такая, что и , поэтому . Поскольку ацикличен, существует вершина , для которой выполняется , что противоречит нашему предположению.
|
Псевдокод
SetEdge transitiveReduction( : Set Vertex , : Set Edge ): for for for if ( ) and ( ) and ( ) return