Двудольные графы и раскраска в 2 цвета — различия между версиями
(→Теорема Кёнига) |
(→Теорема Кёнига) |
||
Строка 18: | Строка 18: | ||
|proof= | |proof= | ||
− | <tex>\Rightarrow</tex> Пусть ненулевой граф <tex> G </tex> [[k-связность|связен]] и не имеет циклов нечетной длины. Выберем произвольно вершину <tex> u </tex> и разобьем множество всех вершин на два непересекающихся множества <tex> U </tex> и <tex> V </tex> так, чтобы в <tex> U </tex> лежали вершины <tex> v_0 </tex>, такие что [[Кратчайший путь в ациклическом графе|кратчайшая цепь]] <tex>(u, v_0)</tex> была чётной длины, а в <tex> V </tex> соответственно вершины <tex>v_1</tex>, для которых длина цепи <tex>(u, v_1)</tex> — нечётная. При этом <tex> u \in U </tex>. | + | <tex>\Rightarrow</tex> Рассмотрим двудольный граф. Начнем цикл в доле <tex> U </tex>. Нужно пройти по четному числу ребер, чтобы вернуться в <tex> U </tex> снова. Следовательно, при замыкании цикла число ребер будет четным. |
+ | |||
+ | <tex>\Leftarrow</tex> Пусть ненулевой граф <tex> G </tex> [[k-связность|связен]] и не имеет циклов нечетной длины. Выберем произвольно вершину <tex> u </tex> и разобьем множество всех вершин на два непересекающихся множества <tex> U </tex> и <tex> V </tex> так, чтобы в <tex> U </tex> лежали вершины <tex> v_0 </tex>, такие что [[Кратчайший путь в ациклическом графе|кратчайшая цепь]] <tex>(u, v_0)</tex> была чётной длины, а в <tex> V </tex> соответственно вершины <tex>v_1</tex>, для которых длина цепи <tex>(u, v_1)</tex> — нечётная. При этом <tex> u \in U </tex>. | ||
В графе <tex> G </tex> нет ребер <tex>ab</tex>, таких что <tex>a, b </tex> лежат одновременно в <tex> U </tex> и <tex>V</tex>. Докажем это от противного. Пусть <tex>a, b \in U </tex>. Зададим <tex> P_0 </tex> — кратчайшая <tex> (u, a) </tex> цепь, а <tex> P_1 </tex> — кратчайшая <tex> (u, b) </tex> цепь. Обе цепи четной длины. Пусть <tex> v_0 </tex> — последняя вершина цепи <tex> P_0 </tex>, принадлежащая <tex> P_1 </tex>. Тогда подцепи от <tex> u </tex> до <tex> v_0 </tex> в <tex> P_0</tex> и <tex>P_1</tex> имеют одинаковую длину (иначе бы, пройдя по более короткой подцепи от <tex>u</tex> до <tex>v_0</tex> мы смогли бы найти более короткую цепь от <tex> u </tex> до <tex> a </tex> или от <tex> u </tex> до <tex> b </tex>, чем цепь <tex> P_0 </tex> или <tex> P_1 </tex> ). Так как подцепи от <tex> v_0 </tex> до <tex> a </tex> и от <tex> v_0 </tex> до <tex> b </tex> в цепях <tex> P_0 </tex> и <tex> P_1 </tex> имеют одинаковую четность, а значит в сумме с ребром <tex> ab </tex> они образуют цикл нечётной длины, что невозможно. | В графе <tex> G </tex> нет ребер <tex>ab</tex>, таких что <tex>a, b </tex> лежат одновременно в <tex> U </tex> и <tex>V</tex>. Докажем это от противного. Пусть <tex>a, b \in U </tex>. Зададим <tex> P_0 </tex> — кратчайшая <tex> (u, a) </tex> цепь, а <tex> P_1 </tex> — кратчайшая <tex> (u, b) </tex> цепь. Обе цепи четной длины. Пусть <tex> v_0 </tex> — последняя вершина цепи <tex> P_0 </tex>, принадлежащая <tex> P_1 </tex>. Тогда подцепи от <tex> u </tex> до <tex> v_0 </tex> в <tex> P_0</tex> и <tex>P_1</tex> имеют одинаковую длину (иначе бы, пройдя по более короткой подцепи от <tex>u</tex> до <tex>v_0</tex> мы смогли бы найти более короткую цепь от <tex> u </tex> до <tex> a </tex> или от <tex> u </tex> до <tex> b </tex>, чем цепь <tex> P_0 </tex> или <tex> P_1 </tex> ). Так как подцепи от <tex> v_0 </tex> до <tex> a </tex> и от <tex> v_0 </tex> до <tex> b </tex> в цепях <tex> P_0 </tex> и <tex> P_1 </tex> имеют одинаковую четность, а значит в сумме с ребром <tex> ab </tex> они образуют цикл нечётной длины, что невозможно. | ||
− | |||
− | |||
}} | }} | ||
Версия 22:20, 22 ноября 2016
Содержание
Раскраска в 2 цвета
Теорема: |
Доказательство: |
Если множество вершин двудольного графа можно разделить на два независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества, тогда граф Если же граф — раскрашиваем. . раскрашиваемый, то множество его вершин можно разделить на два непересекающихся множества так, чтобы в каждом из них не нашлось двух смежных вершин. Тогда граф будет двудольны. |
Теорема Кёнига
Теорема (Кёниг): |
Граф циклы в графе имеют чётную длину. является двудольным тогда и только тогда, когда все |
Доказательство: |
Рассмотрим двудольный граф. Начнем цикл в доле . Нужно пройти по четному числу ребер, чтобы вернуться в снова. Следовательно, при замыкании цикла число ребер будет четным. связен и не имеет циклов нечетной длины. Выберем произвольно вершину и разобьем множество всех вершин на два непересекающихся множества и так, чтобы в лежали вершины , такие что кратчайшая цепь была чётной длины, а в соответственно вершины , для которых длина цепи — нечётная. При этом . В графе Пусть ненулевой граф нет ребер , таких что лежат одновременно в и . Докажем это от противного. Пусть . Зададим — кратчайшая цепь, а — кратчайшая цепь. Обе цепи четной длины. Пусть — последняя вершина цепи , принадлежащая . Тогда подцепи от до в и имеют одинаковую длину (иначе бы, пройдя по более короткой подцепи от до мы смогли бы найти более короткую цепь от до или от до , чем цепь или ). Так как подцепи от до и от до в цепях и имеют одинаковую четность, а значит в сумме с ребром они образуют цикл нечётной длины, что невозможно. |
Следствие
Алгоритм проверки графа на двудольность, используя обход в глубину
Так как граф является двудольным тогда и только тогда, когда все циклы четны, определить двудольность можно за один проход в глубину. На каждом шаге обхода в глубину помечаем вершину. Допустим, мы пошли в первую вершину — помечаем её как . Затем просматриваем все смежные вершины, и если не помечена вершина, то на ней ставим пометку и рекурсивно переходим в нее. Если же она помечена и на ней стоит та же пометка, что и у той, из которой шли (в нашем случае ), значит граф не двудольный.
Алгоритм проверки графа на двудольность, используя обход в ширину
Произведём серию поисков в ширину. Т.е. будем запускать поиск в ширину из каждой непосещённой вершины. Ту вершину, из которой мы начинаем идти, мы помещаем в первую долю. В процессе поиска в ширину, если мы идём в какую-то новую вершину, то мы помещаем её в долю, отличную от доли текущей вершину. Если же мы пытаемся пройти по ребру в вершину, которая уже посещена, то мы проверяем, чтобы эта вершина и текущая вершина находились в разных долях. В противном случае граф двудольным не является. По окончании работы алгоритма мы либо обнаружим, что граф не двудолен, либо найдём разбиение вершин графа на две доли.
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы.
- Харари Ф. Теория графов. /пер. с англ. — изд. 2-е — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Теорема Кёнига
- MAXimal :: algo :: Проверка графа на двудольность
- Обход в глубину. Реализации.
- Обход в ширину. Реализации.