Группы графов — различия между версиями
Ashkroft (обсуждение | вклад) м |
Ashkroft (обсуждение | вклад) |
||
Строка 47: | Строка 47: | ||
Реберная и вершинная группы графа <tex>G</tex> изоморфны тогда и только тогда, когда граф <tex>G</tex> имеет не более одной изолированной вершины, а граф <tex>K_2</tex> не является его компонентой. | Реберная и вершинная группы графа <tex>G</tex> изоморфны тогда и только тогда, когда граф <tex>G</tex> имеет не более одной изолированной вершины, а граф <tex>K_2</tex> не является его компонентой. | ||
|proof= | |proof= | ||
− | Пусть подстановка <tex>\alpha'</tex> группы <tex>\Gamma_1(G)</tex> индуцируется подстановкой <tex>\alpha</tex> группы <tex>\Gamma( | + | Пусть подстановка <tex>\alpha'</tex> группы <tex>\Gamma_1(G)</tex> индуцируется подстановкой <tex>\alpha</tex> группы <tex>\Gamma(G)</tex>. Из определения операции умножения в группе <tex>\Gamma_1(G)</tex> вытекает, что |
<tex>\alpha'\beta'=\alpha\beta</tex> | <tex>\alpha'\beta'=\alpha\beta</tex> | ||
Версия 20:08, 30 ноября 2016
Определение: |
Непустое множество А вместе с заданной на нем бинарной операцией, результат применения которой к элементам
| и из обозначается через , образует группу, если выполняются следующие четыре аксиомы:
Определение: |
Подстановка — взаимно однозначное отображение конечного множества на себя. |
Определение: |
Если некоторая совокупность подстановок замкнута относительно композиции отображений, определяющей бинарную операцию для подстановок на одном и том же множестве, то аксиомы 2, 3 и 4 автоматически выполняются и эта совокупность называется группой подстановок. |
Определение: |
Автоморфизмом графа | называется изоморфизм графа на себя
Определение: |
Каждый автоморфизм | графа есть подстановка множества вершин , сохраняющая смежность. Конечно, подстановка переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы графа образуют группу подстановок , действующую на множестве вершин . Эту группу называют группой или иногда вершинной группой графа .
Определение: |
Вершинная группа графа | индуцирует другую группу подстановок , называемую реберной группой графа ; она действует на множестве ребер .
Для иллюстрации различия групп
и рассмотрим граф , показанный на рисунке; его вершины помечены а ребра . Вершинная группа состоит из четырех подстановокТождественная подстановка вершинной группы индуцирует тождественную подстановку на множестве ребер, в то время как подстановка
индуцирует подстановку на множестве ребер, в которой ребро остается на месте, меняется с , а с . Таким образом, реберная группа состоит из следующих подстановок, индуцируемых указанными выше элементами вершинной группы:Понятно, что реберная и вершинная группы графа
изоморфны. Но они, конечно, не могут быть идентичными, так как степень группы равна 5, а степень группы равна 4.Теорема: |
Реберная и вершинная группы графа изоморфны тогда и только тогда, когда граф имеет не более одной изолированной вершины, а граф не является его компонентой. |
Доказательство: |
Пусть подстановка группы индуцируется подстановкой группы . Из определения операции умножения в группе вытекает, чтодля . Поэтому отображение является групповым гомоморфизмом группы на . Следовательно, тогда и только тогда, когда ядро этого отображения тривиально.Для доказательства необходимости предположим, что . Тогда из неравенства ( — тождественная подстановка) следует, что . Если в графе существуют две различные изолированные вершины и , то можно определить подстановку , положив для . Тогда , но . Если — компонента графа , то, записав ребро графа в виде и определив подстановку точно так же, как выше, получим , но .Чтобы доказать достаточность, предположим, что граф имеет не больше одной изолированной вершины и не является его компонентой. Если группа тривиальна, то очевидно, что группа оставляет на месте каждое ребро и, следовательно, — тривиальная группа. Поэтому предположим, что существует подстановка , для которой . Тогда степени вершин и равны. Поскольку вершины и не изолированы, их степени не равны нулю. Здесь возникает два случая.Случай 1. Вершины Случай 2. Вершины и смежны. Пусть . Так как не является компонентой графа , то степени обеих вершин и больше единицы. Следовательно, существует такое ребро инцидентное вершине , что ребро инцидентно вершине . Отсюда , и тогда . и не смежны. Пусть — произвольное ребро, инцидентное вершине . Тогда , следовательно, . |
См. также
Источники информации
- Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)