Группы графов — различия между версиями
Ashkroft (обсуждение | вклад) |
Ashkroft (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
# Аксиома тождественности. В множестве <tex>A</tex> существует такой элемент <tex>i</tex>, что <tex>i\alpha = \alpha i = \alpha</tex> для <tex> \forall \alpha \in A </tex>. | # Аксиома тождественности. В множестве <tex>A</tex> существует такой элемент <tex>i</tex>, что <tex>i\alpha = \alpha i = \alpha</tex> для <tex> \forall \alpha \in A </tex>. | ||
# Аксиома обращения. Если выполняется аксиома 3, то для <tex> \forall \alpha \in A \ \exists \alpha^{-1} : \alpha\alpha^{-1} = \alpha^{-1}\alpha = i </tex>. | # Аксиома обращения. Если выполняется аксиома 3, то для <tex> \forall \alpha \in A \ \exists \alpha^{-1} : \alpha\alpha^{-1} = \alpha^{-1}\alpha = i </tex>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
}} | }} | ||
Строка 25: | Строка 15: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Каждый автоморфизм <tex>\alpha</tex> графа <tex>G</tex> есть подстановка множества вершин <tex>V</tex>, сохраняющая смежность. Конечно, подстановка <tex>\alpha</tex> переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы графа <tex> G </tex> образуют группу подстановок <tex> \Gamma (G) </tex>, действующую на множестве вершин <tex>V(G)</tex>. Эту группу называют '''группой''' или иногда '''вершинной группой графа''' <tex>G</tex> (англ. ''point-group''). | + | Каждый автоморфизм <tex>\alpha</tex> графа <tex>G</tex> есть подстановка множества вершин <tex>V</tex>, сохраняющая смежность. Конечно, [[:группа#Группа_подстановок|подстановка]] <tex>\alpha</tex> переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы графа <tex> G </tex> образуют [[:группа#Группа_подстановок|группу подстановок]] <tex> \Gamma (G) </tex>, действующую на множестве вершин <tex>V(G)</tex>. Эту группу называют '''группой''' или иногда '''вершинной группой графа''' <tex>G</tex> (англ. ''point-group''). |
}} | }} | ||
Версия 22:05, 6 декабря 2016
Определение: |
Непустое множество А вместе с заданной на нем бинарной операцией, результат применения которой к элементам
| и из обозначается через , образует группу (англ. group), если выполняются следующие четыре аксиомы:
Определение: |
Автоморфизмом (англ. Automorphism) графа | называется изоморфизм графа на себя
Определение: |
Каждый автоморфизм подстановка переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы графа образуют группу подстановок , действующую на множестве вершин . Эту группу называют группой или иногда вершинной группой графа (англ. point-group). | графа есть подстановка множества вершин , сохраняющая смежность. Конечно,
Определение: |
Вершинная группа графа | индуцирует другую группу подстановок , называемую реберной группой графа ; она действует на множестве ребер (англ. line-group).
Для иллюстрации различия групп
и рассмотрим граф , показанный на рисунке; его вершины помечены а ребра . Вершинная группа состоит из четырех подстановокТождественная подстановка вершинной группы индуцирует тождественную подстановку на множестве ребер, в то время как подстановка
индуцирует подстановку на множестве ребер, в которой ребро остается на месте, меняется с , а с . Таким образом, реберная группа состоит из следующих подстановок, индуцируемых указанными выше элементами вершинной группы:Понятно, что реберная и вершинная группы графа
изоморфны. Но они, конечно, не могут быть идентичными, так как степень группы равна 5, а степень группы равна 4.Теорема: |
Реберная и вершинная группы графа изоморфны тогда и только тогда, когда граф имеет не более одной изолированной вершины, а граф не является его компонентой. |
Доказательство: |
Пусть подстановка группы индуцируется подстановкой группы . Из определения операции умножения в группе вытекает, чтодля . Поэтому отображение является групповым гомоморфизмом группы на . Следовательно, тогда и только тогда, когда ядро этого отображения тривиально.Для доказательства необходимости предположим, что . Тогда из неравенства ( — тождественная подстановка) следует, что . Если в графе существуют две различные изолированные вершины и , то можно определить подстановку , положив для . Тогда , но . Если — компонента графа , то, записав ребро графа в виде и определив подстановку точно так же, как выше, получим , но .Чтобы доказать достаточность, предположим, что граф имеет не больше одной изолированной вершины и не является его компонентой. Если группа тривиальна, то очевидно, что группа оставляет на месте каждое ребро и, следовательно, — тривиальная группа. Поэтому предположим, что существует подстановка , для которой . Тогда степени вершин и равны. Поскольку вершины и не изолированы, их степени не равны нулю. Здесь возникает два случая.Случай 1. Вершины Случай 2. Вершины и смежны. Пусть . Так как не является компонентой графа , то степени обеих вершин и больше единицы. Следовательно, существует такое ребро инцидентное вершине , что ребро инцидентно вершине . Отсюда , и тогда . и не смежны. Пусть — произвольное ребро, инцидентное вершине . Тогда , следовательно, . |
Операции на группах подстановок
Сумма подстановок
— это группа подстановок, действующая на объединении непересекающихся множеств и элементы которой записываются в виде и представляют собой упорядоченные пары подстановок из и из . Каждый элемент , принадлежащий множеству преобразуется подстановкой по правилу
Произведение групп
— это группа подстановок, действующая на множестве , элементы которой записываются в виде и представляют собой упорядоченные пары подстановок из и из . Элемент множества преобразуется подстановкой естественным образом:
Композиция групп
группы относительно группы также действует на множестве . Для любой подстановки из и любой последовательности , содержащей (не обязательно различных) подстановок из , существует единственная подстановка из , которая записывается в виде , такая, что для всякой пары из выполняется равенство
Степенная группа (обозначается
) действует на множестве всех функций, отображающих в . Будем всегда предполагать, что степенная группа действует на множестве, состоящем более чем из одной функции. Для каждой пары подстановок из и из существует единственная подстановка из (записывается ), которая действует на любую функцию из в соответствии со следующим соотношением, определяющим образ каждого элемента при отображении :
См. также
Источники информации
- Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)