Матричное представление перестановок — различия между версиями
Sketcher (обсуждение | вклад) |
|||
| Строка 67: | Строка 67: | ||
где <tex> {\delta}_{ij} </tex> — символ Кронекера. }} | где <tex> {\delta}_{ij} </tex> — символ Кронекера. }} | ||
| − | {{Утверждение|statement= | + | {{Утверждение|statement= |
| + | При умножение слева элементарной матрицы <tex> {P}_{ij} </tex> перестановок на матрицу A происходит перестановка i и j строк матрицы A. | ||
| + | Умножение справа элементарной матрицы перестановок <tex> {P}_{ij} </tex> на матрицу A приводит к перестановке i и j столбцов матрицы A. | ||
|proof= | |proof= | ||
| − | + | Рассмотрим сначала умножение слева, т.е. матрицу <tex> {P}_{ij}{A} </tex>, которую обозначим <tex> {B} = {b}_{kl} </tex>. Посчитаем чему равны элементы этой матрицы: | |
| + | |||
| + | <tex> {b}_{kl} = {( 0 ... 0 1 0 ... 0 )} | ||
| + | \begin {pmatrix} | ||
| + | {a}_{1l}\\ | ||
| + | {a}_{2l}\\ | ||
| + | \vdots\\ | ||
| + | {a}_{ml} | ||
| + | \end {pmatrix} | ||
| + | </tex> | ||
| + | }} | ||
{{Утверждение|statement= | {{Утверждение|statement= | ||
Версия 20:36, 2 января 2017
Определение
| Определение: |
| Матрица перестановки (англ. Permutation matrix) — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
| Определение: |
| Если матрица перестановок получена из единичной матрицы перестановкой местами двух строк (или двух столбцов), то такая матрица называется элементарной матрицей перестановок (англ. Elementary permutation matrix). |
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка порядка :
Соответствующей матрицей перестановки является матрица вида:
- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
| Утверждение: |
Для любых двух перестановок их матрицы обладают свойством:
|
|
Рассмотрим эта сумма может быть равна нулю или единице, причем единице в том случае, если в - той строчке на - том столбце матрицы и в - той строчке на - том столбце матрицы стоят единицы. значит, что в перестановке на - том месте стоит элемент , и означает что в перестановке на - том месте стоит элемент , а означает что в перестановке, которой соответствует эта матрица, так же на - том месте стоит элемент . Но также известно, что . В результате если , то . Аналогичные рассуждения можно провести когда , и также получим, что . Поэтому для любых справедливо , а раз такое равентсво выполняется, то . |
| Утверждение: |
Для любой матрицы перестановок существует обратная:
|
| Так как перестановки являются группой, то для любой перестановки существует обратная. Так как любая перестановка имеет свою матрицу перестановки, то утверждение о существовании обратной матрицы перестановки также справедливо. |
| Утверждение: |
Для любой матрицы перестановок справедливо:
|
|
Рассмотрим Теперь в обратную сторону где — символ Кронекера. |
| Утверждение: |
При умножение слева элементарной матрицы перестановок на матрицу A происходит перестановка i и j строк матрицы A.
Умножение справа элементарной матрицы перестановок на матрицу A приводит к перестановке i и j столбцов матрицы A. |
|
Рассмотрим сначала умножение слева, т.е. матрицу , которую обозначим . Посчитаем чему равны элементы этой матрицы: |
| Утверждение: |
Умножение произвольной матрицы на перестановочную соответственно меняет местами её столбцы.
Умножение перестановочной матрицы на произвольную меняет местами строки в . |
|
Рассмотрим произвольную матрицу и матрицу перестановки : возьмем — тую строчку матрицы и умножим на — тый столбец , так как — тый столбец матрицы это двоичный вектор с одной единицей, то от — той строчки матрицы выживет один элемент, причем на — том месте. Умножив — тую строчку матрицы , на остальные столбцы матрицы , получим, что в — той строке матрицы элементы поменяются местами. Умножая другие строки матрицы , будем наблюдать похожее (так как умножаем на те же самые столбцы матрицы ). Таким образом получим, что в матрице столбцы поменялись местами. Доказательство второго утверждения аналогично. |
| Утверждение: |
Квадрат элементарной матрицы перестановок есть единичная матрица. |
|
Любая элементарная матрица перестановок является симметричной матрицей, следовательно . Отсюда следует, что , а . |
| Утверждение: |
Матрица перестановок -го порядка может быть представлена в виде произведения элементарных матриц перестановок. |
Применение
Благодаря своим свойствам, матрицам перестановок нашлось применение в линейной алгебре:
пусть задана матрица перестановки , которая соответствует перестановке , и матрица ,
тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.
См. также
Источники информации
- Матрица перестановки — Википедия
- Матрица перестановки
- Permutation matrix
- Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press.