XOR-SAT — различия между версиями
м (→Описание) |
м (→Вычислительная сложность) |
||
Строка 239: | Строка 239: | ||
==Вычислительная сложность== | ==Вычислительная сложность== | ||
− | [[Файл:Булева выполнимость.png|400px|thumb|down|Формула с 2-мя дизъюнктами может быть неудовлетворена(красный),<b><tex>\mathrm {3-SAT}</tex></b>(зелёный),<b><tex>\mathrm {XOR-3-SAT}</tex></b>(синий) ,ИЛИ/И <b><tex>\mathrm {1-in-3-SAT}</tex></b>, в зависимости от количества переменных со значением TRUE в 1-м (горизонтальном) и втором (вертикальном) | + | [[Файл:Булева выполнимость.png|400px|thumb|down|Формула с 2-мя дизъюнктами может быть неудовлетворена(красный),<b><tex>\mathrm {3-SAT}</tex></b>(зелёный),<b><tex>\mathrm {XOR-3-SAT}</tex></b>(синий) ,ИЛИ/И <b><tex>\mathrm {1-in-3-SAT}</tex></b>, в зависимости от количества переменных со значением TRUE в 1-м (горизонтальном) и втором (вертикальном) конъюнкте.]] |
Поскольку <b><tex>\mathrm {a}</tex></b> <b><tex>\mathrm {XOR}</tex></b> <b><tex>\mathrm {b}</tex></b> <b><tex>\mathrm {XOR}</tex></b> <b><tex>\mathrm {c}</tex></b> принимает значение <b><tex>\mathrm {TRUE}</tex></b>,если и только если 1 из 3 переменных {a,b,c} принимает значение <b><tex>\mathrm {TRUE}</tex></b> ,каждое решение в <b><tex>\mathrm {1-in-3-SAT}</tex></b> задачи для данной КНФ-формулы является также решением <b><tex>\mathrm {XOR-3-SAT}</tex></b> задачи, и ,в свою очередь,обратное также верно. | Поскольку <b><tex>\mathrm {a}</tex></b> <b><tex>\mathrm {XOR}</tex></b> <b><tex>\mathrm {b}</tex></b> <b><tex>\mathrm {XOR}</tex></b> <b><tex>\mathrm {c}</tex></b> принимает значение <b><tex>\mathrm {TRUE}</tex></b>,если и только если 1 из 3 переменных {a,b,c} принимает значение <b><tex>\mathrm {TRUE}</tex></b> ,каждое решение в <b><tex>\mathrm {1-in-3-SAT}</tex></b> задачи для данной КНФ-формулы является также решением <b><tex>\mathrm {XOR-3-SAT}</tex></b> задачи, и ,в свою очередь,обратное также верно. | ||
Как следствие, для каждой КНФ-формулы, можно решить <b><tex>\mathrm {XOR}</tex></b>-<b><tex>\mathrm {3}</tex></b>-<b><tex>\mathrm {SAT}</tex></b> -задачу и на основании результатов сделать вывод, что либо <b><tex>\mathrm {3-SAT-задача}</tex></b> решаема или, что <b><tex>\mathrm {1-in-3-SAT-задача}</tex></b> нерешаема. | Как следствие, для каждой КНФ-формулы, можно решить <b><tex>\mathrm {XOR}</tex></b>-<b><tex>\mathrm {3}</tex></b>-<b><tex>\mathrm {SAT}</tex></b> -задачу и на основании результатов сделать вывод, что либо <b><tex>\mathrm {3-SAT-задача}</tex></b> решаема или, что <b><tex>\mathrm {1-in-3-SAT-задача}</tex></b> нерешаема. |
Версия 01:53, 4 января 2017
Задача: |
КНФ функции, записанной в виде XOR-КНФ, таким образом, чтобы результат данной функции был равен . | (XOR-satisfiability) выполнимость функции — задача распределения аргументов в булевой
Содержание
Описание
Одним из особых случаев [1]
является класс задач, где каждый конъюнкт содержит операции (т. е. исключающее или), а не (обычные) операторы.(Формально, обобщенная КНФ с тернарным булевым оператором R работает только если 1 или 3 переменные дают в своих аргументах. Конъюнкты,имеющие более 3 переменных могут быть преобразованы в сочетании с формулой преобразования с сохранением выполнимости булевой функции(ссылка на книгу ниже), т. е. - может быть снижена до - - )
Это задача Р-класса,так как - формулу можно рассматривать как систему линейных уравнений по модулю 2,которая ,в свою очередь, может быть решена за методом Гаусса[2].Такое представление возможно на основе связи между Булевой алгеброй и Булевым кольцом [3] и том факте,что арифметика по модулю 2 образует конечное поле [4].
Решение XOR-SAT задачи методом Гаусса
Solving an XOR-SAT example by Gaussian elimination | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вычислительная сложностьПоскольку NP-класса,в отличии от SAT. принимает значение ,если и только если 1 из 3 переменных {a,b,c} принимает значение ,каждое решение в задачи для данной КНФ-формулы является также решением задачи, и ,в свою очередь,обратное также верно. Как следствие, для каждой КНФ-формулы, можно решить - - -задачу и на основании результатов сделать вывод, что либо решаема или, что нерешаема. При условии ,что P- и NP-классы не равны,ни 2-,ни Хорн-,ни не являются задачиСм. такжеПримечания
Источники информации
|