Теорема Хаусдорфа об ε-сетях — различия между версиями
(добавлена категория) |
Komarov (обсуждение | вклад) м |
||
| Строка 11: | Строка 11: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | Пусть <tex>A, B \ | + | Пусть <tex>A, B \subset X</tex>, <tex>\varepsilon > 0</tex>. Тогда <tex>B</tex> {{---}} <tex>\varepsilon</tex>-сеть для <tex>A</tex>, если |
<tex>\forall a\in A\ \exists b \in B: \ \rho(a, b) < \varepsilon</tex>. | <tex>\forall a\in A\ \exists b \in B: \ \rho(a, b) < \varepsilon</tex>. | ||
}} | }} | ||
| Строка 19: | Строка 19: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | <tex>A \ | + | <tex>A \subset X</tex> {{---}} вполне ограничено в <tex>X</tex>, если <tex>\forall \varepsilon \ \exists </tex> конечная <tex>\varepsilon</tex>-сеть. |
}} | }} | ||
Версия 15:14, 19 декабря 2010
Некоторые определения
Пусть — метрическое пространство. Тогда принимая критерий Коши существования предела числовой последовательности за аксиому, приходим к понятию полного метрического пространства:
Например, в связи с критерием Коши, — полное метрическое пространство.
| Определение: |
| Пусть , . Тогда — -сеть для , если . |
Особый интерес представляют конечные -сети.
| Определение: |
| — вполне ограничено в , если конечная -сеть. |
Теорема Хаусдорфа
| Теорема (Хаусдорф): |
Пусть — метрическое пространство, , — замкнуто.
Тогда — компакт — вполне ограниченно. |
| Доказательство: |
|
1. Пусть — компакт. Предположим, что — не вполне ограниченно. Тогда . Если такого нет, то имеет -сеть . Тогда найдётся . Если бы такого не было, то у была бы -сеть . И так далее. Получаем набор точек , . Так как — компакт, то из этой последовательности можно выделить сходящуюся. Но увы. 2. — замкнутое и вполне ограниченно. Рассмотрим последовательность в . Докажем, что из неё можно выделить сходящуюся подпоследовательность. Так как множество ограничено, то оно будет содержаться в конечном числе шаров радиуса . Рассмотрим последовательность . Она сходится к нулю. Так как — вполне ограниченна, то можно найти точки — -сеть для .
Шаров конечное число. Значит, среди них есть тот, который содержит бесконечное число. бесконечно много элементов из . Обозначим это за . — замкнутое и вполне ограниченно. Покроем его конечной системой шаров радиуса . Среди них выберем тот, в котором бесконечно много элементов . И так далее В результате выстраивается следующая бесконечная таблица:
В первой строке бесконечно много элементов из . Во второй строке бесконечно много элементов из . И так далее. Рассмотрим последовательность точек (диагональ Кантора) Очевидно, это подпоследовательность исходной последовательности. Если доказать, что она сходится к себе, то, так как — полное, у неё будет предел. Так как — замкнутое, то предел этой последовательности принадлежит ей. Рассмотрим Так как есть в -й строке, то . В этои неравенстве — произвольное. Тогда так как , последовательность сходится к себе, значит, по полноте, у неё есть предел. TODO: казалось бы, причём здесь компакт? |