Список заданий по ДМ 2к 2017 весна — различия между версиями
(Новая страница: «<wikitex> # Формальный степенной ряд $\exp(s) = e^s$ определен как $e^s=1+\frac{1}{1!}s+\frac{1}{2!}s^2+\frac{1}{3!}s^3+\ldots+\...») |
|||
Строка 12: | Строка 12: | ||
# Докажите, что $\int(A'(s)B(s) + A(s)B'(s)) = A(s)B(s) - A(0)B(0)$. | # Докажите, что $\int(A'(s)B(s) + A(s)B'(s)) = A(s)B(s) - A(0)B(0)$. | ||
# Найдите производящую функцию для последовательности $1, 2, 3, \ldots, n, \ldots$. | # Найдите производящую функцию для последовательности $1, 2, 3, \ldots, n, \ldots$. | ||
+ | # Найдите производящую функцию для последовательности $0 \cdot 1, 1 \cdot 2, 2 \cdot 3, 3 \cdot 4, \ldots, (n - 1) \cdot n, \ldots$. | ||
# Найдите производящую функцию для последовательности $1^2, 2^2, 3^2, \ldots, n^2, \ldots$. | # Найдите производящую функцию для последовательности $1^2, 2^2, 3^2, \ldots, n^2, \ldots$. | ||
</wikitex> | </wikitex> |
Версия 14:27, 18 февраля 2017
<wikitex>
- Формальный степенной ряд $\exp(s) = e^s$ определен как $e^s=1+\frac{1}{1!}s+\frac{1}{2!}s^2+\frac{1}{3!}s^3+\ldots+\frac{1}{n!}s^n+\ldots$. Логично, что $e^{-s}=1-\frac{1}{1!}s+\frac{1}{2!}s^2-\frac{1}{3!}s^3+\ldots+(-1)^n\frac{1}{n!}s^n+\ldots$. Докажите, используя определение умножения для степенных рядов, что $e^se^{-s}=1$.
- Формальный степенной ряд $(1+s)^\alpha$ определен как $(1+s)^\alpha=1+\frac{\alpha}{1}s+\frac{\alpha(\alpha-1)}{1 \cdot 2}s^2+\ldots+\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{1 \cdot 2 \cdot\ldots\cdot n}s^n+\ldots$. Докажите, что $(1+s)^\alpha(1+s)^\beta=(1+s)^{\alpha+\beta}$.
- Формальный степенной ряд $\ln\left(\frac{1}{1-s}\right)$ определен как $\ln\left(\frac{1}{1-s}\right)=s+\frac{1}{2}s^2+\frac{1}{3}s^3+\ldots+\frac{1}{n}s^n+\ldots$. Докажите, что $\exp\left(\ln\left(\frac{1}{1-s}\right)\right)=(1-s)^{-1}$.
- Пусть $B(s) = b_1s+b_2s^2+b_3s^3+\ldots+b_ns^n+\ldots$, причем $b_1\ne 0$. Пусть формальные степенные ряды $A(s)$ и $C(s)$ таковы, что $A(B(s)) = s$, $B(C(s))=s$. Докажите, что $A(s)=C(s)$ Этот ряд называется обратным к $B(s)$, обозначается как $B^{-1}(s)$.
- Докажите, что не существует формального степенного ряда $A(s)$, такого что $sA(s)=1$.
- Будем называть нулем степенной ряд $0(s) = 0 + 0s + 0s^2 + \ldots$. Докажите, что $A(s) \ne 0(s)$, $B(s) \ne 0(s)$, то $A(s)B(s) \ne 0(s)$.
- Пусть формальный степенной ряд $A(s)$ имеет целые коэффициенты. При каких условиях ряд $\frac{1}{A(s)}$ имеет целые коэффициенты?
- Пусть формальный степенной ряд $A(s)$ имеет целые коэффициенты. При каких условиях ряд $A^{-1}(s)$ имеет целые коэффициенты?
- Докажите, что $(A(s) + B(s))' = A'(s) + B'(s)$.
- Докажите, что $(A(s)B(s))' = A'(s)B(s) + A(s)B'(s)$.
- Докажите, что $\int(A'(s)B(s) + A(s)B'(s)) = A(s)B(s) - A(0)B(0)$.
- Найдите производящую функцию для последовательности $1, 2, 3, \ldots, n, \ldots$.
- Найдите производящую функцию для последовательности $0 \cdot 1, 1 \cdot 2, 2 \cdot 3, 3 \cdot 4, \ldots, (n - 1) \cdot n, \ldots$.
- Найдите производящую функцию для последовательности $1^2, 2^2, 3^2, \ldots, n^2, \ldots$.
</wikitex>