Граф замен — различия между версиями
(→Лемма о единственном паросочетании в графе замен) |
|||
Строка 20: | Строка 20: | ||
|about=о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем | |about=о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем | ||
|statement = | |statement = | ||
− | Пусть дан двудольный граф замен. В его правой доле выделено два подмножества вершин <tex>X_1 = \{z \in S \setminus I \mid I \cup z \in \mathcal{I}_1 \}, X_2 = \{z \in S \setminus I \mid I \cup z \in \mathcal{I}_2 \}</tex>. <tex>P</tex> | + | Пусть дан двудольный граф замен. В его правой доле выделено два подмножества вершин <tex>X_1 = \{z \in S \setminus I \mid I \cup z \in \mathcal{I}_1 \}, X_2 = \{z \in S \setminus I \mid I \cup z \in \mathcal{I}_2 \}</tex>. <tex>P</tex> {{---}} кратчайший путь из <tex>X_1</tex> в <tex>X_2</tex>. <tex>G'</tex> {{---}} подграф <tex>G</tex>, включающий множество вершин, лежащих на пути <tex>P</tex>. Тогда в <tex>G'</tex> существует единственное [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях#Паросочетание в двудольном графе|полное паросочетание]]. |
|proof = | |proof = | ||
[[Файл:Граф_индуцированный_кратчайшим_путем.png | thumb | left | Рис. 1]] | [[Файл:Граф_индуцированный_кратчайшим_путем.png | thumb | left | Рис. 1]] | ||
Строка 31: | Строка 31: | ||
:Пусть существует другое паросочетание <tex>\langle a_i, b_{j_i} \rangle</tex>. Тогда пусть <tex>i_0 = \min \{ i \: \mid \: j_i < i \}</tex>. | :Пусть существует другое паросочетание <tex>\langle a_i, b_{j_i} \rangle</tex>. Тогда пусть <tex>i_0 = \min \{ i \: \mid \: j_i < i \}</tex>. | ||
:Обозначим <tex>j_{i_0}</tex> как <tex>i_1</tex>. Заметим, что <tex>i_1 < i_0</tex> и поэтому не может быть <tex>j_{i_1} < j_{i_0}</tex>, ведь <tex>i_0</tex> — минимальное из соответствующего множества. Так же невозможно <tex>j_{i_1} = j_{i_0}</tex>, поскольку тогда <tex>a_{i_0}</tex> и <tex>a_{i_1}</tex> имели бы одинаковую пару. | :Обозначим <tex>j_{i_0}</tex> как <tex>i_1</tex>. Заметим, что <tex>i_1 < i_0</tex> и поэтому не может быть <tex>j_{i_1} < j_{i_0}</tex>, ведь <tex>i_0</tex> — минимальное из соответствующего множества. Так же невозможно <tex>j_{i_1} = j_{i_0}</tex>, поскольку тогда <tex>a_{i_0}</tex> и <tex>a_{i_1}</tex> имели бы одинаковую пару. | ||
− | :Следовательно, <tex>j_{i_1} > j_{i_0}</tex> (рис. 2). Это значит, что существует путь <tex>P_1 = (a_1, b_1, \ldots, a_{i_1}, b_{j_{i_1}}, a_{j_{i_1} + 1}, \ldots, a_k, b_k )</tex> короче, чем <tex>P</tex>, что противоречит | + | :Следовательно, <tex>j_{i_1} > j_{i_0}</tex> (рис. 2). Это значит, что существует путь <tex>P_1 = (a_1, b_1, \ldots, a_{i_1}, b_{j_{i_1}}, a_{j_{i_1} + 1}, \ldots, a_k, b_k )</tex> короче, чем <tex>P</tex>, что противоречит тому, что <tex>P</tex> {{---}} кратчайший путь. |
}} | }} | ||
Строка 38: | Строка 38: | ||
|about= | |about= | ||
о паросочетании в графе замен | о паросочетании в графе замен | ||
− | |statement= Пусть <tex>M = \langle X,\mathcal{I} \rangle </tex> — матроид. Множества <tex>A, B \in \mathcal{I}</tex> {{---}} независимы, причем <tex>|A| = |B|</tex>. Тогда двудольный граф <tex>D_{M}(\mathcal{I})</tex> содержит полное паросочетание на <tex>A \bigtriangleup B</tex>. | + | |statement= Пусть <tex>M = \langle X,\mathcal{I} \rangle </tex> — [[Определение матроида|матроид]]. Множества <tex>A, B \in \mathcal{I}</tex> {{---}} независимы, причем <tex>|A| = |B|</tex>. Тогда двудольный граф <tex>D_{M}(\mathcal{I})</tex> содержит полное паросочетание на <tex>A \bigtriangleup B</tex>. |
|proof= | |proof= | ||
Строка 49: | Строка 49: | ||
:Пусть верно для <tex>|A \bigtriangleup B| = N</tex>. | :Пусть верно для <tex>|A \bigtriangleup B| = N</tex>. | ||
:Пусть <tex>k = |A| = |B|</tex> и <tex>|A \bigtriangleup B| \geqslant 1</tex>. | :Пусть <tex>k = |A| = |B|</tex> и <tex>|A \bigtriangleup B| \geqslant 1</tex>. | ||
− | :Рассмотрим матроид <tex>M_1 = \langle X, \{ A \mid A \in \mathcal{I}, A \leqslant k \} \rangle</tex>. Множества <tex>A, B \in \mathcal{I}</tex>, <tex>|A| = |B|</tex> и матроид <tex>M_1</tex> не содержит множеств больших, чем <tex>A</tex>, а значит они являются базами для матроида <tex>M_1</tex>. | + | :Рассмотрим матроид <tex>M_1 = \langle X, \{ A \mid A \in \mathcal{I}, |A| \leqslant k \} \rangle</tex>. Множества <tex>A, B \in \mathcal{I}</tex>, <tex>|A| = |B|</tex> и матроид <tex>M_1</tex> не содержит множеств больших, чем <tex>A</tex>, а значит они являются базами для матроида <tex>M_1</tex>. |
:По [[Теорема о базах|сильной теореме о базах]]: <tex>\forall x \in A \setminus B: \exists y \in B \setminus A : (A \setminus x) \cup y \in \mathcal{I}</tex> и <tex>(B \setminus y) \cup x \in \mathcal{I}</tex> | :По [[Теорема о базах|сильной теореме о базах]]: <tex>\forall x \in A \setminus B: \exists y \in B \setminus A : (A \setminus x) \cup y \in \mathcal{I}</tex> и <tex>(B \setminus y) \cup x \in \mathcal{I}</tex> | ||
:Из этого следует, что множества <tex>A' = (A \setminus x) \cup y </tex> и <tex>B' = (B \cup x) \setminus y</tex> являются независимыми, а также базами <tex>M_1</tex>. Заметим, что <tex>|A' \bigtriangleup B'| < |A \bigtriangleup B|</tex>, <tex>|A' \bigtriangleup B'| = N</tex>, <tex>|A \bigtriangleup B| = N+1 </tex>. По предположению индукции у <tex> |A' \bigtriangleup B'|</tex> есть полное паросочетание. | :Из этого следует, что множества <tex>A' = (A \setminus x) \cup y </tex> и <tex>B' = (B \cup x) \setminus y</tex> являются независимыми, а также базами <tex>M_1</tex>. Заметим, что <tex>|A' \bigtriangleup B'| < |A \bigtriangleup B|</tex>, <tex>|A' \bigtriangleup B'| = N</tex>, <tex>|A \bigtriangleup B| = N+1 </tex>. По предположению индукции у <tex> |A' \bigtriangleup B'|</tex> есть полное паросочетание. | ||
:По [[Теорема о базах|теореме о базах]] <tex>\forall x \in A \setminus B: \exists y \in B \setminus A : (A \setminus x) \cup y | :По [[Теорема о базах|теореме о базах]] <tex>\forall x \in A \setminus B: \exists y \in B \setminus A : (A \setminus x) \cup y | ||
− | \in \mathcal{I}</tex>, следовательно по определению графа <tex>D_M(A) (x, y) \in D_M(A)</tex>. Тогда <tex>N \cup {(x, y)}</tex> составляет полное паросочетание на <tex>|A \bigtriangleup B|</tex>. Индукционный переход доказан. | + | \in \mathcal{I}</tex>, следовательно по определению графа <tex>D_M(A), (x, y) \in D_M(A)</tex>. Тогда <tex>N \cup {(x, y)}</tex> составляет полное паросочетание на <tex>|A \bigtriangleup B|</tex>. Индукционный переход доказан. |
}} | }} |
Версия 16:25, 25 апреля 2017
Граф замен (англ exchange graph) — специальный ориентированный двудольный граф, фигурирующий в теореме Эдмондса-Лоулера.
Пусть даны матроиды
, , множество . Введем граф замен.Определение: |
Граф замен для двух матроидов | — граф, левой долей которого являются элементы множества , правой — все остальные элементы и в котором проведены ребра , а также
Пусть — кратчайший путь в из в . Тогда алгоритм с помощью этого пути либо определяет максимальность набора , либо позволяет найти набор большей мощности.
Также существует граф замен для одного матроида.
Определение: |
Пусть дан матроид | и независимый сет . Тогда граф замен (или просто ) — это двудольный граф с долями и с рёбрами между и если
Лемма (о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем): |
Пусть дан двудольный граф замен. В его правой доле выделено два подмножества вершин полное паросочетание. . — кратчайший путь из в . — подграф , включающий множество вершин, лежащих на пути . Тогда в существует единственное |
Доказательство: |
Докажем единственность.
|
Лемма (о паросочетании в графе замен): |
Пусть матроид. Множества — независимы, причем . Тогда двудольный граф содержит полное паросочетание на . — |
Доказательство: |
Индукция по .
|
Лемма о единственном паросочетании в графе замен
Утверждение: |
Пусть двудольный граф содержит единственное полное паросочетание . Тогда можно упорядочить вершины левой и правой долей таким образом, что . При этом рёбра паросочетания будут иметь вид . |
Индукция по
|
Лемма (о единственном паросочетании в графе замен): |
Дан матроид . Пусть двудольный граф содержит единственное полное паросочетание на , где и . Тогда . |
Доказательство: |
Упорядочим вершины левой и правой долей таким образом, что . При таком упорядочивании ребра паросочетания имеют вид .
|