Схема Бернулли — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Пример)
(Определение)
Строка 33: Строка 33:
 
<tex>  
 
<tex>  
 
F_{\xi}(x) = P(\xi < x) \begin{cases}
 
F_{\xi}(x) = P(\xi < x) \begin{cases}
0, & x\le 0 \\
+
0, & x\leqslant 0 \\
1 - p & 0 < x \le 1\\
+
1 - p & 0 < x \leqslant 1\\
 
1, & x > 1  
 
1, & x > 1  
 
\end{cases}
 
\end{cases}

Версия 16:17, 1 июня 2017

Распределение Бернулли — описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех", например, при бросании монеты, или при моделировании удачной или неудачной хирургической операции.

Биномиальное распределение

Говорят, что случайная величина [math]\xi[/math] имеет биномиальное распределение с параметрами [math]n \in \mathbb N[/math] и [math] p \in (0, 1)[/math] и пишут: [math] \xi \in \mathbb B_{n, p}[/math] если [math] \xi[/math] принимает значения [math]k = 0, 1, ... ,n[/math] с вероятностями [math]P(\xi = k) = [/math][math] \binom{n}{k} p^k (1 - p)^{n - k} [/math] . Случайная величина с таким распределением имеет смысл числа успехов в [math] n [/math] испытаниях схемы Бернулли с вероятностью успеха [math]p[/math]. Таблица распределения [math] \xi [/math] имеет вид

[math]\xi [/math] 0 1 ... [math]k[/math] ... [math]n[/math]
[math]P[/math] [math](1 - p) ^ n [/math] [math]np(1 - p)^{n - 1}[/math] ... [math]\binom{n}{k}p^k(1 - p)^{n - k} [/math] ... [math] p^n [/math]

Определение

Определение:
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in (0, 1)[/math] , а неудача — с вероятностью [math] q = 1 - p [/math].

Случайная величина [math]\xi[/math] с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью [math]p[/math] успеха : ни одного успеха или один успех. Функция распределения [math] \xi[/math] имеет вид

[math] F_{\xi}(x) = P(\xi \lt x) \begin{cases} 0, & x\leqslant 0 \\ 1 - p & 0 \lt x \leqslant 1\\ 1, & x \gt 1 \end{cases} [/math]

Img660.png

Обозначим через [math] v_{n} [/math] число успехов, случившихся в [math] n[/math] испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от [math]0[/math] до [math]n[/math] в зависимости от результатов испытаний. Например, если все [math]n [/math] испытаний завершились неудачей, то величина [math] v_{n} [/math] равна нулю.

Теорема:
Для любого [math]k = 0, 1, . . . , n [/math] вероятность получить в [math]n[/math] испытаниях [math]k[/math] успехов равна [math] P(v_{n} = k ) = [/math] [math] \binom{n}{k} [/math][math] p^{k} q^{n - k}[/math]
Доказательство:
[math]\triangleright[/math]

Событие [math]\{A = v_{n} = k\}[/math] означает, что в [math]n[/math] испытаниях схемы Бернулли произошло ровно [math]k[/math] успехов. Рассмотрим один элементарный исход из события [math]A[/math]: когда первые [math]k[/math] испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события [math]A[/math] отличаются лишь расположением [math]k[/math] успехов на [math]n[/math] местах. Есть ровно [math]\binom{n}{k}[/math] cпособов расположить [math]k[/math] успехов на [math]n[/math] местах. Поэтому событие [math]A[/math] состоит из [math]\binom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]

Набор вероятностей в теореме называется биномиальным распределением вероятностей.
[math]\triangleleft[/math]

Пример

Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.

Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.

[math]P(v_{10} = 4) =[/math] [math] \binom{10}{4}\cdot \left(\frac{1}{2}\right)^ {4} \cdot \left(\frac{1}{2}\right)^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]

[math]P(v_{10} = 5) = [/math] [math]\binom{10}{5}\cdot \left(\frac{1}{2}\right)^ {5} \cdot \left(\frac{1}{2}\right)^ {10 - 5}[/math][math]~\approx ~ 0{.}246 [/math]

[math]P(v_{10} = 6) =[/math] [math] \binom{10}{6}\cdot \left(\frac{1}{2}\right)^ {6} \cdot \left(\frac{1}{2}\right)^ {10 - 6}[/math] [math]~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: [math]P(4 \leqslant v_{10} \leqslant 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 [/math]

Лемма

Лемма:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .},[/math] равна [math]P(r = k) = pq^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k - 1 [/math] испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math]
[math]\triangleleft[/math]


Теорема:
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых [math]n [/math] и [math]k[/math] имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = [/math] [math] \frac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \frac{P(r \gt n + k)}{P(r \gt n)} [/math] (9)

Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \ge [/math] 0 вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые [math]m[/math] испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к (9),что эта случайная величина равна [math] P(r \gt n + k | r \gt n) = [/math] [math] \frac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \frac{q^{n + k}} {q^{n}} =[/math] [math] q^{k} = P(r \gt k)[/math].
[math]\triangleleft[/math]

Пример

Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.

Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По лемме, [math] P(A_{k}) =[/math] [math]\frac{1}{6} \cdot (\frac{5}{6})^{k - 1} [/math] События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: [math] A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .[/math] Вероятности этих объединений равны суммам вероятностей слагаемых:

[math] P(A) =[/math][math] \frac{1}{6} + \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{2} + \frac{1}{6}\cdot \left(\frac{5}{6}\right)^{4} ... = \frac{6}{11}.[/math] Теперь аналогичным образом посчитаю вероятность для события В

[math] P(B) =[/math] [math]\frac{1}{6} \cdot\frac{5}{6}+ \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{3} + \frac{1}{6}\cdot \left(\frac{5}{6}\right)^{5} ... = \frac{5}{11}. [/math]

Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.

Пример

Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Поэтому воспользоваться формулой для числа успехов в схеме Бернулли не удаcтся. Попробуем вывести подходящую формулу. Пусть в одном испытании возможны [math] m[/math] исходов: [math]1, 2, . . . , m,[/math] и [math]i[/math]-й исход в одном испытании случается с вероятностью [math] p_{i}[/math] , где [math]p_{1} + . . . + p_{m} = 1[/math].

Теорема:
Обозначим через [math]P(n_{1}, . . . , n_{m})[/math] вероятность того, что в [math]n[/math] независимых испытаниях первый исход случится [math] n_{1}[/math] раз, второй исход — [math]n_{2}[/math] раз, и так далее, наконец, [math]m[/math]-й исход — [math]n_{m}[/math] раз тогда верна формула: [math] P(n_{1}, . . . , n_{m}) = [/math] [math] \frac{n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!}\cdot {p_{1}}^{n_{1}}\cdot... \cdot {p_{m}}^{n_{m}} [/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим один элементарный исход, благоприятствующий выпадению [math]n_{1}[/math] единиц, [math] n_{2}[/math] двоек, и так далее. Это результат [math]n[/math] экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей [math]p_{n_{1}}...p_{n_{m}}[/math]. Остальные благоприятные исходы отличаются лишь расположением чисел [math]1, 2, . . . , m[/math] на [math]n[/math] местах. Число таких исходов равно числу способов расположить на [math]n[/math] местах [math]n_{1}[/math] единиц, [math]n_{2}[/math] двоек,и так далее Это число равно

[math]\binom{n}{n_1}\cdot\binom{n - n_1 - n_2}{n_2} \cdot\binom{n - n_1 - n_2- n_3}{n_3} ...\cdot \binom{n - n_1 - n_2.. - n_{m -1}}{n_m} = \frac {n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!} [/math]
[math]\triangleleft[/math]

Теперь мы можем вернуться к последнему примеру и выписать ответ: так как вероятности выпадения тройки и единицы равны по [math]\genfrac{}{}{}{0}{1}{6}[/math], а вероятность третьего исхода (выпала любая другая грань) [math]\genfrac{}{}{}{0}{4}{6}[/math], то вероятность получить десять троек, три единицы и ещё два других очка равна

[math] P(10, 3, 2) = [/math] [math] {15!\over 10! \cdot 3! \cdot 2!} \cdot \left(\frac{1}{6}\right)^{10} \cdot \left({1\over 6}\right)^3\cdot\left({4\over6}\right)^2 [/math]

См. также

Литература

  • Н.И Чернова 'Теория вероятности' Учебное пособие СибГУТИ— Новосибирск, 2009.