Панциклический граф — различия между версиями
(frac -> genfrac) |
|||
Строка 3: | Строка 3: | ||
}} | }} | ||
− | '''Предпосылки к теореме'''. Теорема Мантела<ref>https://en.wikipedia.org/wiki/Tur%C3%A1n%27s_theorem#Mantel's_theorem</ref>(частный случай теоремы Турана<ref>https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A2%D1%83%D1%80%D0%B0%D0%BD%D0%B0</ref>) утверждает, что для любого граф на <tex> n </tex> вершинах, у которого количество ребер не меньше <tex> n^2 | + | '''Предпосылки к теореме'''. Теорема Мантела<ref>https://en.wikipedia.org/wiki/Tur%C3%A1n%27s_theorem#Mantel's_theorem</ref>(частный случай теоремы Турана<ref>https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A2%D1%83%D1%80%D0%B0%D0%BD%D0%B0</ref>) утверждает, что для любого граф на <tex> n </tex> вершинах, у которого количество ребер не меньше <tex> \genfrac{}{}{}{0}{n^2}{4} </tex>, либо содержит треугольник либо является <tex>K_{\genfrac{}{}{}{}{n}{2}, \genfrac{}{}{}{}{n}{2}}</tex>. |
{{Теорема | {{Теорема | ||
|about=J. A. Bondy | |about=J. A. Bondy | ||
|statement= | |statement= | ||
− | <tex>G(V, E) </tex> {{---}} гамильтонов граф, <tex>|V| = n, |E| \geqslant n^2 | + | <tex>G(V, E) </tex> {{---}} гамильтонов граф, <tex>|V| = n, |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex>. |
Тогда верно одно из двух утверждений: | Тогда верно одно из двух утверждений: | ||
#<tex> G </tex> {{---}} панциклический граф | #<tex> G </tex> {{---}} панциклический граф | ||
− | #<tex> G </tex> = <tex>K_{n | + | #<tex> G </tex> = <tex>K_{\genfrac{}{}{}{}{n}{2}, \genfrac{}{}{}{}{n}{2}}</tex> |
|proof= | |proof= | ||
Строка 28: | Строка 28: | ||
Докажем методом от противного, что <tex> n </tex> {{---}} четно. Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{0}{n-1}{2} </tex>. | Докажем методом от противного, что <tex> n </tex> {{---}} четно. Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{0}{n-1}{2} </tex>. | ||
Пусть это не так, тогда <tex> \forall i, 1 \leqslant i \leqslant n : deg(v_i) \geqslant \genfrac{}{}{}{0}{n-1}{2} + 1 = \genfrac{}{}{}{0}{n+1}{2} </tex>, значит <tex> \forall j, 1 \leqslant j \leqslant n : deg(v_j) + deg(v_{j+1}) \geqslant \genfrac{}{}{}{0}{n+1}{2} + \genfrac{}{}{}{0}{n+1}{2} = n + 1 </tex>, то есть мы получили противоречие с тем, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>. | Пусть это не так, тогда <tex> \forall i, 1 \leqslant i \leqslant n : deg(v_i) \geqslant \genfrac{}{}{}{0}{n-1}{2} + 1 = \genfrac{}{}{}{0}{n+1}{2} </tex>, значит <tex> \forall j, 1 \leqslant j \leqslant n : deg(v_j) + deg(v_{j+1}) \geqslant \genfrac{}{}{}{0}{n+1}{2} + \genfrac{}{}{}{0}{n+1}{2} = n + 1 </tex>, то есть мы получили противоречие с тем, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>. | ||
− | Без потери общности пусть <tex> v_x = v_n </tex>. Рассмотрим <tex> 2|E| = \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{ | + | Без потери общности пусть <tex> v_x = v_n </tex>. Рассмотрим <tex> 2|E| = \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{\genfrac{}{}{}{}{n - 1}{2}} (deg(v_{2i-1}) + deg(v_{2i})) + deg(v_n) \leqslant \genfrac{}{}{}{0}{n(n-1)}{2} + </tex> <tex> \genfrac{}{}{}{0}{n-1}{2} < \genfrac{}{}{}{0}{n^2}{2} </tex>, то есть <tex> |E| < \genfrac{}{}{}{0}{n^2}{4} </tex>, но по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex> {{---}} получили противоречие. Таким образом <tex> n </tex> является четным. Тогда верно, что <tex> 2|E| \leqslant \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{n/2} (deg(v_{2i-1}) + deg(v_{2i})) \leqslant \genfrac{}{}{}{0}{n^2}{2} </tex>, а так как по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex>, то <tex> |E| = \genfrac{}{}{}{0}{n^2}{4} </tex>. Данное равенство достигается, если верно, что: |
[[Файл:Circle 3.jpg|800px|right]] | [[Файл:Circle 3.jpg|800px|right]] | ||
Строка 51: | Строка 51: | ||
Тогда верно одно из двух утверждений: | Тогда верно одно из двух утверждений: | ||
#<tex> G </tex> {{---}} панциклический граф | #<tex> G </tex> {{---}} панциклический граф | ||
− | #<tex> G </tex> = <tex>K_{n | + | #<tex> G </tex> = <tex>K_{\genfrac{}{}{}{}{n}{2}, \genfrac{}{}{}{}{n}{2}}</tex> |
− | |proof=По [[Теорема Оре|теореме Оре]] <tex> G </tex> {{---}} гамильтонов граф. Покажем, что <tex> m \geqslant n^2 | + | |proof=По [[Теорема Оре|теореме Оре]] <tex> G </tex> {{---}} гамильтонов граф. Покажем, что <tex> m \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex>. Пусть <tex> k </tex> {{---}} минимальная степень вершины в графе. |
− | # <tex> k \geqslant n | + | # <tex> k \geqslant \genfrac{}{}{}{0}{n}{2} </tex>, тогда <tex> 2m = \sum\limits_{i=1}^n deg(v_i) >= \sum\limits_{i=1}^n k = k n \geqslant \genfrac{}{}{}{0}{n^2}{2} </tex> |
− | # <tex> k < n | + | # <tex> k < \genfrac{}{}{}{0}{n}{2} </tex>. Пусть существует <tex> x </tex> вершин, так что их степени равны <tex> k </tex>, тогда они все должны быть связаны, так как иначе мы получим противоречие с утверждением теоремы <tex> \forall (u, v) \notin E : deg(u) + deg(v) \geqslant n </tex>. Понятно, что <tex> x \leqslant k + 1 </tex>, но так как граф является гамильтоновым, то он связен, а значит <tex> x < k + 1 </tex>. Несложно заметить, что если из всех <tex> x </tex> вершин степени <tex> k </tex> провести оставшиеся ребра в одну вершину, у которой степень больше, то в графе остенется как минимум <tex> n - k - 1 </tex> вершин, степени которых как минимум <tex> n - k </tex>, поскольку должно выполняться неравенство из теоермы. Тогда можно оценить количество ребер. <br> <tex> m \geqslant \genfrac{}{}{}{0}{1}{2}((n-k-1)(n-k)+k^2+(k+1)) = \genfrac{}{}{}{0}{1}{2}(n^2 - n(2k + 1) + 2k^2 + 2k + 1) \geqslant \genfrac{}{}{}{0}{n^2+1}{4} </tex> |
− | Таким образом <tex> m \geqslant n^2 | + | Таким образом <tex> m \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex> и согласно теореме граф либо панциклический, либо <tex>K_{\genfrac{}{}{}{}{n}{2}, \genfrac{}{}{}{}{n}{2}}</tex>. |
}} | }} | ||
Версия 22:14, 13 декабря 2017
Определение: |
Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от | до . Если граф содержит все циклы от до , то такой граф называют -панциклическим.
Предпосылки к теореме. Теорема Мантела[1](частный случай теоремы Турана[2]) утверждает, что для любого граф на вершинах, у которого количество ребер не меньше , либо содержит треугольник либо является .
Теорема (J. A. Bondy): |
Тогда верно одно из двух утверждений:
|
Доказательство: |
Обозначим как гамильтонов цикл в графе . Для простоты расположим на окружности.Также подразумевается, что все индексы при вершинах берутся по модулю, т.е. .Пусть в графе нет цикла длины , (по условию в графе существует гамильтонов цикл, длина которого равна ). Рассмотрим две соседние вершины и вместе с ними рассмотрим следующие пары:Для таких, что лежит на дуге рассмотрим пары ( ) и ( ) (см. рисунок слева)Для таких, что лежит на дуге рассмотрим пары ( ) и ( ) (см. рисунок справа)При добавлении таких пар ребер в графе появляется цикл длины , а значить в может входить максимум одно ребро из таких пар. Тогда можно утверждать, что .Докажем методом от противного, что — четно. Пусть является нечетным, тогда из рассуждений выше существует вершина , для которое верно, что . Пусть это не так, тогда , значит , то есть мы получили противоречие с тем, что . Без потери общности пусть . Рассмотрим , то есть , но по условию — получили противоречие. Таким образом является четным. Тогда верно, что , а так как по условию , то . Данное равенство достигается, если верно, что:
Пусть не , тогда существует такое четное число , что в графе существует ребро , т.е. существует цикл нечетной длины. Докажем, что в таком случае существует ребро . Пусть это не так и минимальное четное , что больше двух, т.е. . Тогда существует три случая:
|
Утверждение: |
Тогда верно одно из двух утверждений:
|
По теореме Оре — гамильтонов граф. Покажем, что . Пусть — минимальная степень вершины в графе.
|