Барицентр дерева — различия между версиями
Anverk (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|id = tree_barycenter | |id = tree_barycenter | ||
− | |definition = '''Барицентром дерева''' (англ. ''Tree barycenter'') называется вершина <tex> x </tex>, у которой величина <tex> \sum\limits_v dist(x, v) </tex> минимальна, где <tex> dist(x, v) -</tex> расстояние между вершинами <tex> x </tex> и <tex> v </tex> в рёбрах. | + | |definition = '''Барицентром дерева''' (англ. ''Tree barycenter'') называется вершина <tex> x </tex>, у которой величина <tex>d(x) = \sum\limits_v dist(x, v) </tex> минимальна, где <tex> dist(x, v) -</tex> расстояние между вершинами <tex> x </tex> и <tex> v </tex> в рёбрах. |
}} | }} | ||
== Основные свойства == | == Основные свойства == | ||
+ | |||
+ | {{Лемма | ||
+ | |id = lem1 | ||
+ | |statement = Пусть вершины <tex> y, z -</tex> соседи вершины <tex> x </tex>. Тогда <tex> 2d(x) < d(y) + d(z) </tex>. | ||
+ | |proof = Подвесим дерево за вершину <tex> x </tex>. Тогда дерево можно представить в виде объединения трёх непересекающихся множеств: <tex> Y, Z </tex> (поддеревья с корнем в вершинах <tex> y, z </tex> соответственно) и <tex> X - </tex> остальных вершин (заметим, что все эти множества не пустые, так как содержат вершины <tex> y, z, x </tex> соответственно). Найдём <tex> d(x) </tex>: | ||
+ | <tex> d(x) = d(y) + |Y| - |Z| - |X| </tex>. Это верно, так как все вершины из множества <tex> Y </tex> находятся от <tex> x </tex> на одно ребро дальше, чем от <tex> y </tex>, а вершины из множеств <tex> Z, X </tex> наоборот. Аналогично <tex> d(x) = d(z) + |Z| - |Y| - |X| </tex>. Сложим эти уравнения и получим: <tex> 2d(x) = d(y) + d(z) - 2|X| </tex>. При этом <tex> |X| > 0 </tex>. Таким образом, <tex> 2d(x) < d(y) + d(z) </tex>. | ||
+ | }} | ||
+ | |||
+ | {{Лемма | ||
+ | |id = lem2 | ||
+ | |about = о выпуклости <tex> d(x) </tex> | ||
+ | |statement = Функция <tex> d(x) </tex> из определения выпукла на любом пути дерева | ||
+ | }} | ||
{{Теорема | {{Теорема |
Версия 01:51, 18 декабря 2017
Определение: |
Барицентром дерева (англ. Tree barycenter) называется вершина | , у которой величина минимальна, где расстояние между вершинами и в рёбрах.
Основные свойства
Лемма: |
Пусть вершины соседи вершины . Тогда . |
Доказательство: |
Подвесим дерево за вершину . Тогда дерево можно представить в виде объединения трёх непересекающихся множеств: (поддеревья с корнем в вершинах соответственно) и остальных вершин (заметим, что все эти множества не пустые, так как содержат вершины соответственно). Найдём : . Это верно, так как все вершины из множества находятся от на одно ребро дальше, чем от , а вершины из множеств наоборот. Аналогично . Сложим эти уравнения и получим: . При этом . Таким образом, . |
Лемма (о выпуклости | ):
Функция из определения выпукла на любом пути дерева |
Теорема (о числе барицентров): |
В дереве не более барицентов |
Определение: |
Центром дерева (англ. Tree center) называется вершина | , для которой величина минимальна.
Теорема: |
Для любого числа существует дерево, в котором расстояние между центром и барицентром вершины не меньше |