Барицентр дерева — различия между версиями
Anverk (обсуждение | вклад) |
Anverk (обсуждение | вклад) |
||
Строка 37: | Строка 37: | ||
|statement= Для любого числа <tex> k </tex> существует дерево, в котором расстояние между центром и барицентром дерева не меньше <tex> k </tex> | |statement= Для любого числа <tex> k </tex> существует дерево, в котором расстояние между центром и барицентром дерева не меньше <tex> k </tex> | ||
|proof= Рассмотрим дерево, построенное следующим образом: к вершине дерева <tex> x </tex> проводим <tex> n + 1 </tex> ребро, <tex> n </tex> из которых проведено в листья дерева, а одно ребро продолжим достраивать как бамбук, расстояние в котором от листа до <tex> x </tex> назовём числом <tex> l </tex>. Докажем, что существуют такие <tex> m, l </tex>, что расстояние между центром и барицентром не меньше <tex> k </tex>. | |proof= Рассмотрим дерево, построенное следующим образом: к вершине дерева <tex> x </tex> проводим <tex> n + 1 </tex> ребро, <tex> n </tex> из которых проведено в листья дерева, а одно ребро продолжим достраивать как бамбук, расстояние в котором от листа до <tex> x </tex> назовём числом <tex> l </tex>. Докажем, что существуют такие <tex> m, l </tex>, что расстояние между центром и барицентром не меньше <tex> k </tex>. | ||
− | Назовём лист бамбука вершиной <tex> a </tex>, а центр дерева <tex>- \ c </tex>. Тогда <tex> dist(a, c) = \displaystyle \frac{l+1}{2} </tex>. Для удобства будем считать, что центр один, для этого будем рассматривать только нечётные <tex> l. </tex> Теперь будем искать, какое <tex> n </tex> стоит выбрать, чтобы барицентром оказалась вершина <tex> x </tex>. Найдём <tex> d(x) </tex>: <tex> d(x) = n + 1 + \dots + l = n + \displaystyle \frac{(l+1)l}{2} </tex>. Рассмотрим вершину <tex> v \neq x </tex>. Очевидно, что <tex> d(v) > 2(n-1) </tex>, так как все вершины, кроме <tex> x </tex> удалены хотя бы на расстояние <tex> 2 </tex> от <tex> n-1 </tex> вершины. В таком случае, <tex> d(x) < d(v) \Leftrightarrow n > \displaystyle \frac{(l+1)l}{2} + 2 </tex>. Мы получили, что <tex> dist(c, x) = \displaystyle \frac{l-1}{2} </tex>, и <tex> x </tex> является барицентром. Найдём такие <tex> l ,</tex> что <tex> \displaystyle \frac{l-1}{2} \ | + | Назовём лист бамбука вершиной <tex> a </tex>, а центр дерева <tex>- \ c </tex>. Тогда <tex> dist(a, c) = \displaystyle \frac{l+1}{2} </tex>. Для удобства будем считать, что центр один, для этого будем рассматривать только нечётные <tex> l. </tex> Теперь будем искать, какое <tex> n </tex> стоит выбрать, чтобы барицентром оказалась вершина <tex> x </tex>. Найдём <tex> d(x) </tex>: <tex> d(x) = n + 1 + \dots + l = n + \displaystyle \frac{(l+1)l}{2} </tex>. Рассмотрим вершину <tex> v \neq x </tex>. Очевидно, что <tex> d(v) > 2(n-1) </tex>, так как все вершины, кроме <tex> x </tex> удалены хотя бы на расстояние <tex> 2 </tex> от <tex> n-1 </tex> вершины. В таком случае, <tex> d(x) < d(v) \Leftrightarrow n > \displaystyle \frac{(l+1)l}{2} + 2 </tex>. Мы получили, что <tex> dist(c, x) = \displaystyle \frac{l-1}{2} </tex>, и <tex> x </tex> является барицентром. Найдём такие <tex> l ,</tex> что <tex> \displaystyle \frac{l-1}{2} \geqslant k</tex>. Для этого можно взять любое <tex> l \geqslant 2k + 1 </tex>. Таким образом, искомые <tex> m, l </tex> существуют. |
}} | }} | ||
Версия 21:14, 21 декабря 2017
Определение: |
Барицентром дерева (англ. Tree barycenter) называется вершина | , у которой величина минимальна, где расстояние между вершинами и в рёбрах.
Основные свойства
Лемма: |
Пусть существуют вершины соседи вершины . Тогда . |
Доказательство: |
Подвесим дерево за вершину . Тогда дерево можно представить в виде объединения трёх непересекающихся множеств: (поддеревья с корнем в вершинах соответственно) и остальных вершин (заметим, что все эти множества не пустые, так как содержат вершины соответственно). Найдём : . Это верно, так как все вершины из множества находятся от на одно ребро дальше, чем от , а вершины из множеств наоборот. Аналогично . Сложим эти уравнения и получим: . При этом . Таким образом, . |
Лемма: |
Функция строго выпукла (вниз) на любом пути дерева. |
Доказательство: |
Очевидно из характеристического признака строго выпуклой функции: | .
Теорема (о числе барицентров): |
В дереве не более барицентов |
Доказательство: |
Пусть в дереве есть хотя бы | барицентра: . Тогда рассмотрим путь, начинающийся в и заканчивающийся в . Так как , и функция строго выпукла, вершины являются соседями. В противном случае, или в этом пути есть вершина , или для всех вершин в пути . Первое предположение противоречит тому, что барицентры, а второе тому, что функция строго выпукла. Таким образом, вершины являются соседями. Аналогично доказывается, что вершины и соседи. Но в таком случае в дереве образовался цикл, что противоречит определению дерева. Таким образом, более барицентров в дереве быть не может.
Центр дерева
Определение: |
Центром дерева (англ. Tree center) называется вершина | , для которой величина минимальна.
Теорема: |
Для любого числа существует дерево, в котором расстояние между центром и барицентром дерева не меньше |
Доказательство: |
Рассмотрим дерево, построенное следующим образом: к вершине дерева Назовём лист бамбука вершиной проводим ребро, из которых проведено в листья дерева, а одно ребро продолжим достраивать как бамбук, расстояние в котором от листа до назовём числом . Докажем, что существуют такие , что расстояние между центром и барицентром не меньше . , а центр дерева . Тогда . Для удобства будем считать, что центр один, для этого будем рассматривать только нечётные Теперь будем искать, какое стоит выбрать, чтобы барицентром оказалась вершина . Найдём : . Рассмотрим вершину . Очевидно, что , так как все вершины, кроме удалены хотя бы на расстояние от вершины. В таком случае, . Мы получили, что , и является барицентром. Найдём такие что . Для этого можно взять любое . Таким образом, искомые существуют. |