Пересечение всех максимальных по включению барьеров — различия между версиями
Scuuter (обсуждение | вклад) м (minor fixes_3.0) |
Scuuter (обсуждение | вклад) (разные правки) |
||
Строка 2: | Строка 2: | ||
|id = maximum_barrier | |id = maximum_barrier | ||
|neat = 1 | |neat = 1 | ||
− | |definition = '''Максимальным по включению [[ Декомпозиция Эдмондса-Галлаи#barrier | барьером ]] '''(англ.'' | + | |definition = '''Максимальным по включению [[ Декомпозиция Эдмондса-Галлаи#barrier | барьером ]] '''(англ.''maximal barrier'') называется барьер, не являющийся подмножеством любого другого барьера. |
}} | }} | ||
+ | |||
+ | |||
+ | |||
Строка 12: | Строка 15: | ||
|id = theorem_about_maximum_barriers | |id = theorem_about_maximum_barriers | ||
|statement = Пересечение всех максимальных по включению барьеров графа <tex>G</tex> равно <tex>A(G)</tex>. | |statement = Пересечение всех максимальных по включению барьеров графа <tex>G</tex> равно <tex>A(G)</tex>. | ||
− | |proof = <tex>\supset</tex>.<br> | + | |proof = Пусть <tex>H</tex> {{---}} пересечение всех максимальных по включению барьеров графа <tex>G</tex>. Чтобы доказать теорему, докажем, что <tex>A(G)\subset H</tex> и <tex>A(G)\supset H</tex>.<br> |
− | Пусть <tex>B</tex> {{---}} максимальный барьер, <tex>|A(G)\setminus B| = k > 0</tex>, <tex>B' = B \cup A(G) | + | <br> |
+ | <tex>A(G)\subset H</tex><br> | ||
+ | Пусть <tex>B</tex> {{---}} максимальный по включению барьер, <tex>|A(G)\setminus B| = k > 0</tex>, <tex>B' = B \cup A(G) \Rightarrow |B'| = |B| + k</tex>.<br> | ||
Докажем, что <tex>B'</tex> {{---}} барьер и получим противоречие. Для этого достаточно доказать, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, ведь в таком случае <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{def}(G)\ + |B| + k \Rightarrow \mathrm{odd}(G\setminus B')\ - |B'| \geqslant \mathrm{def}(G)</tex>. <br> | Докажем, что <tex>B'</tex> {{---}} барьер и получим противоречие. Для этого достаточно доказать, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, ведь в таком случае <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{def}(G)\ + |B| + k \Rightarrow \mathrm{odd}(G\setminus B')\ - |B'| \geqslant \mathrm{def}(G)</tex>. <br> | ||
[[Файл: Max_barriers_a.png|170px|thumb|right|Рисунок <tex>1</tex>]] | [[Файл: Max_barriers_a.png|170px|thumb|right|Рисунок <tex>1</tex>]] | ||
Строка 23: | Строка 28: | ||
Просуммировав прибавления по всем компонентам связности графа <tex>G - B</tex>, содержащим вершины из <tex>A(G)</tex>, мы получим, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, что и требовалось доказать.<br> | Просуммировав прибавления по всем компонентам связности графа <tex>G - B</tex>, содержащим вершины из <tex>A(G)</tex>, мы получим, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, что и требовалось доказать.<br> | ||
<br> | <br> | ||
− | <tex>\ | + | <tex>A(G)\supset H</tex><br> |
Предположим противное, пусть существует вершина <tex>x\notin A(G)</tex>, принадлежащая всем максимальным барьерам. По [[ Декомпозиция Эдмондса-Галлаи#barier_struct3| теореме о структуре барьера]] <tex>x\in C(G)</tex>.<br> | Предположим противное, пусть существует вершина <tex>x\notin A(G)</tex>, принадлежащая всем максимальным барьерам. По [[ Декомпозиция Эдмондса-Галлаи#barier_struct3| теореме о структуре барьера]] <tex>x\in C(G)</tex>.<br> | ||
Рассмотрим максимальное паросочетание <tex>M</tex> графа <tex>G</tex>, пусть <tex>xy\in M</tex>.<br> | Рассмотрим максимальное паросочетание <tex>M</tex> графа <tex>G</tex>, пусть <tex>xy\in M</tex>.<br> | ||
Докажем, что <tex>B = A(G)\cup \{ y \}</tex> {{---}} барьер графа <tex>G</tex>. Так как <tex>|B| = |A(G)| + 1</tex>, достаточно доказать, что <tex>\mathrm{odd}(B)\ \geqslant \mathrm{odd}(A(G))\ + 1</tex>.<br> | Докажем, что <tex>B = A(G)\cup \{ y \}</tex> {{---}} барьер графа <tex>G</tex>. Так как <tex>|B| = |A(G)| + 1</tex>, достаточно доказать, что <tex>\mathrm{odd}(B)\ \geqslant \mathrm{odd}(A(G))\ + 1</tex>.<br> | ||
− | По [[ Декомпозиция Эдмондса-Галлаи#theorem_Gallai_Edmonds| теореме Эдмондса-Галлаи]] <tex>y\in C(G)</tex>. Пусть <tex>W</tex> {{---}} компонента связности графа <tex> | + | По [[ Декомпозиция Эдмондса-Галлаи#theorem_Gallai_Edmonds| теореме Эдмондса-Галлаи]] <tex>y\in C(G)</tex>. Пусть <tex>W</tex> {{---}} компонента связности графа <tex>C(G)</tex>, содержащая <tex>x</tex> и <tex>y</tex> (см. рисунок <tex>2</tex>). Вершины <tex>W</tex> разбиваются на пары соединённых рёбрами из <tex>M</tex>, поэтому <tex>|W|</tex> чётно.<br> |
Множество <tex>W' = W\setminus \{ y \}</tex> содержит нечётное число вершин и является объединением нескольких компонент связности графа <tex> G - B</tex>, которых нет в <tex>G - A(G)</tex>. Среди этих компонент связности есть нечётная, значит <tex>B</tex> {{---}} барьер графа <tex>G</tex>.<br> | Множество <tex>W' = W\setminus \{ y \}</tex> содержит нечётное число вершин и является объединением нескольких компонент связности графа <tex> G - B</tex>, которых нет в <tex>G - A(G)</tex>. Среди этих компонент связности есть нечётная, значит <tex>B</tex> {{---}} барьер графа <tex>G</tex>.<br> | ||
Пусть <tex>B'</tex> {{---}} максимальный барьер графа <tex>G</tex>, содержащий <tex>B</tex>.<br> | Пусть <tex>B'</tex> {{---}} максимальный барьер графа <tex>G</tex>, содержащий <tex>B</tex>.<br> |
Версия 17:15, 24 декабря 2017
Теорема: |
Пересечение всех максимальных по включению барьеров графа равно . |
Доказательство: |
Пусть Пусть |
См. также
- Декомпозиция Эдмондса-Галлаи
- Лапы и минимальные по включению барьеры в графе
- Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях
- Теорема Татта о существовании полного паросочетания
Источники информации
- Карпов Д. В. — Теория графов, стр 54-55