Конструирование комбинаторных объектов и их подсчёт — различия между версиями
Mervap (обсуждение | вклад) (+Pair) |
Mervap (обсуждение | вклад) (+Cycle) |
||
Строка 3: | Строка 3: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{ | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots m\}</tex>. Тогда '''количество последовательностей''' веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}</tex>. |
− | |||
− | <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}</tex>. | ||
}} | }} | ||
Строка 29: | Строка 27: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{ | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=PSet(A)</tex> {{---}} множество всех множеств составленных из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда '''количество множеств''' суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}}{i} s_{n-ik, k-1}</tex> {{---}} количество таких множеств, что они содержат объекты суммарного веса <tex dpi="130">\leqslant k</tex>. |
}} | }} | ||
Строка 46: | Строка 44: | ||
===Количество разбиений на слагаемые=== | ===Количество разбиений на слагаемые=== | ||
− | Пусть <tex dpi="130">A=\mathbb{N}</tex>, <tex dpi="130">S=PSet(A)</tex> {{---}} множество всех [[Нахождение количества разбиений числа на слагаемые|разбиений на слагаемые]], <tex dpi="130">W=\{1 \ldots 1\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда, | + | Пусть <tex dpi="130">A=\mathbb{N}</tex>, <tex dpi="130">S=PSet(A)</tex> {{---}} множество всех[[Нахождение количества разбиений числа на слагаемые|разбиений на слагаемые]], <tex dpi="130">W=\{1 \ldots 1\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда, |
− | :<tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1} = s_{n, k-1} + s_{n - k, k}</tex>, что, как не сложно заметить, соответствует формуле, полученной методом динамического программирования. | + | :<tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1} = s_{n, k-1} + s_{n - k, k}</tex>, что, как не сложно заметить, соответствует формуле, полученной методом [[Нахождение количества разбиений числа на слагаемые#Алгоритм за O(N^2)|динамического программирования]]. |
Строка 53: | Строка 51: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{ | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=MSet(A)</tex> {{---}} множество всех мультимножеств из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} s_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, что они содержат объекты суммарного веса не более <tex dpi="130">k</tex>. |
}} | }} | ||
Строка 83: | Строка 81: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{ | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex>, <tex dpi="130">B=\{b_{1},b_{2}, \ldots ,b_{m}\}</tex> {{---}} множества из различных объектов, <tex dpi="130">S=Pair(A, B)</tex> {{---}} множество всех пар объектов, составленных из элементов <tex dpi="130">A</tex> и <tex dpi="130">B</tex>. <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>, составленных из элементов <tex dpi="130">A</tex>, а <tex dpi="130">U=\{u_{1},u_{2}, \ldots ,u_{k}\}</tex> {{---}} соответственно для <tex dpi="130">B</tex>. Тогда '''количество пар''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=\sum_{i=0}^{n}w_{i}u_{n-i}</tex>. |
}} | }} | ||
Строка 89: | Строка 87: | ||
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">S=Pair(T, T)</tex> {{---}} множество всех пар из данных деревьев. Чтобы получить двоичное дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней левого и правого сына с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда: | Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">S=Pair(T, T)</tex> {{---}} множество всех пар из данных деревьев. Чтобы получить двоичное дерево из <tex dpi="130">n</tex> вершин, достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней левого и правого сына с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда: | ||
:<tex dpi="150">T_{n}=S_{n-1}=\sum_{i=0}^{n-1}T_{i}T_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]. | :<tex dpi="150">T_{n}=S_{n-1}=\sum_{i=0}^{n-1}T_{i}T_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]. | ||
+ | |||
+ | ==Циклы(Cycle)== | ||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">C=Cycle(A)</tex> {{---}} множество всех циклов из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots m\}</tex>. | ||
+ | |||
+ | Тогда '''количество циклов''' веса <tex dpi="150">n</tex> можно вычислить как <tex dpi="150">C_{n}=\sum_{s=1}^{n}c_{n, s}</tex>, где <tex dpi="150">c_{n,s}</tex> {{---}} количество циклов веса <tex dpi="150">n</tex> длины <tex dpi="150">s</tex>. | ||
+ | |||
+ | По [[Лемма Бёрнсайда и Теорема Пойа#Лемма Бёрнсайда|лемме Бёрнсайда]] <tex dpi="150">c_{n,s} =\sum_{i=0}^{s-1}\dfrac{|St(\vec{i})|}{s}</tex>, где <tex dpi="150">|St(\vec{i})|=z_{n,s,i}</tex> {{---}} количество стабилизаторов для циклического сдвига на <tex dpi="150">i</tex> | ||
+ | |||
+ | Пусть <tex dpi="150">g=gcd(s,i)</tex> {{---}} наибольший общий делитель <tex dpi="150">s</tex> и <tex dpi="150">i</tex>. Тогда длина циклов при сдвиге на <tex dpi="150">i</tex> равна <tex dpi="150">\frac{s}{g}</tex> | ||
+ | |||
+ | <p> | ||
+ | <tex dpi = "150">z_{n, s, i} = | ||
+ | \left \{\begin{array}{ll} 0, & n \mod \frac{s}{g} \neq 0 \\ | ||
+ | b_{\frac{ng}{s}, g}, & n \mod \frac{s}{g} = 0 \end{array} \right. | ||
+ | </tex> | ||
+ | </p> | ||
+ | Где <tex dpi="150">b_{n,k}</tex> {{---}} число способов упорядочить набор из <tex dpi="150">k</tex> элементов суммарного веса <tex dpi="150">n</tex> и | ||
+ | |||
+ | <tex dpi="150">b_{n,k}=\sum_{i=1}^{n}w_{i}b_{n-i, k-1}</tex>, <tex dpi="150">b_{n,1}=w_{n}</tex> | ||
+ | }} | ||
==Примeчания== | ==Примeчания== | ||
<references/> | <references/> |
Версия 07:17, 27 декабря 2017
Содержание
Последовательности(Seq)
Утверждение: |
Пусть — множество из различных объектов, — множество всех последовательностей из элементов , — количество объектов веса . Тогда количество последовательностей веса можно вычислить как . |
Подсчет битовых векторов длины
Пусть битовых векторов.
, , — множество всехТогда,
.Подсчет Seq из маленьких и больших элементов
Пусть
, , — множество всех последовательностей из маленьких и больших элементов .Тогда, [1].
, где — -ое число ФибоначчиПодсчет подвешенных непомеченных деревьев с порядком на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин достаточно взять вершину и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:- .
- число Каталана , где — -ое
Множества(PSet)
Утверждение: |
Пусть — множество из различных объектов, — множество всех множеств составленных из элементов , — количество объектов веса , . Тогда количество множеств суммарного веса можно вычислить как , где — количество таких множеств, что они содержат объекты суммарного веса . |
Количество PSet из элементов или
Пусть
, — множество всех множеств из , , . Тогда , где- Для ,
Количество разбиений на слагаемые
Пусть разбиений на слагаемые, , . Тогда,
, — множество всех- динамического программирования. , где , что, как не сложно заметить, соответствует формуле, полученной методом
Мультимножества(MSet)
Утверждение: |
Пусть — множество из различных объектов, — множество всех мультимножеств из элементов , — количество объектов веса , . Тогда количество мультимножеств из объектов суммарного веса можно вычислить как , где — количество таких мультимножеств, что они содержат объекты суммарного веса не более . |
Количество MSet из элементов или
Пусть
, — множество всех множеств из , , .- Тогда, , где
Подсчет подвешенных непомеченных деревьев без порядка на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество лесов из вершин, таких что они содержат не более чем вершин. Чтобы получить дерево из вершин достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:- .
- .
Количество таких деревьев с [2]
вершинами образуют последовательностьПары(Pair)
Утверждение: |
Пусть , — множества из различных объектов, — множество всех пар объектов, составленных из элементов и . — количество объектов веса , составленных из элементов , а — соответственно для . Тогда количество пар из объектов суммарного веса можно вычислить как . |
Количество подвешенных неполных двоичных деревьев
Пусть
— количество таких деревьев с вершинами, . — множество всех пар из данных деревьев. Чтобы получить двоичное дерево из вершин, достаточно взять вершину и подвесить к ней левого и правого сына с суммарным количеством вершин . Тогда:- число Каталана. , где — -ое
Циклы(Cycle)
Утверждение: |
Пусть — множество из различных объектов, — множество всех циклов из элементов , — количество объектов веса .
Тогда количество циклов веса можно вычислить как , где — количество циклов веса длины .По лемме Бёрнсайда , где — количество стабилизаторов для циклического сдвига на Пусть — наибольший общий делитель и . Тогда длина циклов при сдвиге на равна
Где — число способов упорядочить набор из элементов суммарного веса и , |