Конструирование комбинаторных объектов и их подсчёт — различия между версиями
Mervap (обсуждение | вклад) (+information sources) |
Mervap (обсуждение | вклад) м (few fix) |
||
Строка 3: | Строка 3: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots m\} | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots m\}</tex>. Тогда '''количество последовательностей''' веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}</tex>. |
}} | }} | ||
===Подсчет битовых векторов длины <tex dpi="150">n</tex>=== | ===Подсчет битовых векторов длины <tex dpi="150">n</tex>=== | ||
− | Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex> | + | Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex> <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех [[Комбинаторные объекты#Битовые вектора|битовых векторов]], <tex dpi="130">S_{0}=1</tex>. |
Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}=2S_{n-1}=2^{n}</tex>. | Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}=2S_{n-1}=2^{n}</tex>. | ||
===Подсчет Seq из маленьких и больших элементов=== | ===Подсчет Seq из маленьких и больших элементов=== | ||
− | Пусть <tex dpi="130">A=\{1, 2\}</tex>, <tex dpi="130">W=\{1, 1, 0 \ldots 0\}</tex>, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из маленьких и больших элементов <tex dpi="130"> | + | Пусть <tex dpi="130">A=\{1, 2\}</tex>, <tex dpi="130">W=\{1, 1, 0 \ldots 0\}</tex>, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из маленьких и больших элементов, <tex dpi="130">S_{0}=1</tex>, <tex dpi="130">S_{1}=1</tex>. |
Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-1}=S_{n-1}+S_{n-2}=F_{n}</tex>, где <tex dpi="150">F_{n}</tex> {{---}} <tex>n</tex>-ое число Фибоначчи <ref>[[wikipedia:Fibonacci number|Wikipedia {{---}} Числа Фибоначчи]]</ref>. | Тогда, <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-1}=S_{n-1}+S_{n-2}=F_{n}</tex>, где <tex dpi="150">F_{n}</tex> {{---}} <tex>n</tex>-ое число Фибоначчи <ref>[[wikipedia:Fibonacci number|Wikipedia {{---}} Числа Фибоначчи]]</ref>. | ||
===Подсчет подвешенных непомеченных деревьев с порядком на детях=== | ===Подсчет подвешенных непомеченных деревьев с порядком на детях=== | ||
− | Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из данных деревьев. <tex dpi="130">S_{n}</tex> {{---}} количество последовательностей с суммарным количество вершин <tex dpi="130">n</tex>. Чтобы получить дерево из <tex dpi="130">n</tex> вершин достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней последовательность деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда: | + | Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из данных деревьев. <tex dpi="130">S_{n}</tex> {{---}} количество последовательностей с суммарным количество вершин <tex dpi="130">n</tex>. Чтобы получить дерево из <tex dpi="130">n</tex> вершин достаточно взять <tex dpi="130">1</tex> вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда: |
:<tex dpi="150">T_{n}=S_{n-1}</tex>. | :<tex dpi="150">T_{n}=S_{n-1}</tex>. | ||
:<tex dpi="150">S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]. | :<tex dpi="150">S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]]. | ||
Строка 27: | Строка 27: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=PSet(A)</tex> {{---}} множество всех множеств составленных из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\} | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=PSet(A)</tex> {{---}} множество всех множеств составленных из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество множеств''' суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}}{i} s_{n-ik, k-1}</tex> {{---}} количество таких множеств, что они содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>. |
}} | }} | ||
===Количество PSet из элементов <tex>0</tex> или <tex>1</tex>=== | ===Количество PSet из элементов <tex>0</tex> или <tex>1</tex>=== | ||
Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex>S=PSet(A)</tex> {{---}} множество всех множеств из <tex dpi="130">A</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда <tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1}</tex>. | Пусть <tex dpi="130">A=\{0, 1\}</tex>, <tex>S=PSet(A)</tex> {{---}} множество всех множеств из <tex dpi="130">A</tex>, <tex dpi="130">W=\{2, 0 \ldots 0\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда <tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} s_{n-ik, k-1}</tex>. | ||
+ | |||
:<tex dpi="150">S_{0}=s_{0, 0} = 1</tex>. | :<tex dpi="150">S_{0}=s_{0, 0} = 1</tex>. | ||
:<tex dpi="150">S_{1}=s_{1, 1} = s_{1, 0} + 2s_{0, 0} = 2s_{0, 0} = 2</tex>. | :<tex dpi="150">S_{1}=s_{1, 1} = s_{1, 0} + 2s_{0, 0} = 2s_{0, 0} = 2</tex>. | ||
Строка 51: | Строка 52: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=MSet(A)</tex> {{---}} множество всех мультимножеств из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\} | + | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=MSet(A)</tex> {{---}} множество всех мультимножеств из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=s_{n, n}</tex>, где <tex dpi="150">s_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} s_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, что они содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>. |
}} | }} | ||
Строка 70: | Строка 71: | ||
===Подсчет подвешенных непомеченных деревьев без порядка на детях=== | ===Подсчет подвешенных непомеченных деревьев без порядка на детях=== | ||
− | Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">F=MSet(T)</tex> {{---}} множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. <tex dpi="130">F_{n}=f_{n,n}</tex> {{---}} количество лесов с суммарным количество вершин <tex dpi="130">n</tex>. <tex dpi="130">f_{n, k}</tex> {{---}} количество лесов из <tex dpi="130">n</tex> вершин, | + | Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">F=MSet(T)</tex> {{---}} множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. <tex dpi="130">F_{n}=f_{n,n}</tex> {{---}} количество лесов с суммарным количество вершин <tex dpi="130">n</tex>. <tex dpi="130">f_{n, k}</tex> {{---}} количество таких лесов из <tex dpi="130">n</tex> вершин, что деревья в них содержат не более чем <tex dpi="130">k</tex> вершин. Чтобы получить дерево из <tex dpi="130">n</tex> вершин достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней лес деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда: |
:<tex dpi="150">T_{n}=F_{n-1}</tex>. | :<tex dpi="150">T_{n}=F_{n-1}</tex>. | ||
:<tex dpi="150">F_{n}=f_{n, n}</tex>. | :<tex dpi="150">F_{n}=f_{n, n}</tex>. | ||
Строка 112: | Строка 113: | ||
Где <tex dpi="150">b_{n,k}</tex> {{---}} число способов упорядочить набор из <tex dpi="150">k</tex> элементов суммарного веса <tex dpi="150">n</tex> и | Где <tex dpi="150">b_{n,k}</tex> {{---}} число способов упорядочить набор из <tex dpi="150">k</tex> элементов суммарного веса <tex dpi="150">n</tex> и | ||
− | <tex dpi="150">b_{n,k}=\sum_{i=1}^{n}w_{i}b_{n-i, k-1}</tex>, | + | <tex dpi="150">b_{n,k}=\sum_{i=1}^{n}w_{i}b_{n-i, k-1}</tex>, причем <tex dpi="150">b_{n,1}=w_{n}</tex>. |
===Задача об ожерельях=== | ===Задача об ожерельях=== |
Версия 10:40, 27 декабря 2017
Содержание
Последовательности(Seq)
Утверждение: |
Пусть — множество из различных объектов, — множество всех последовательностей из элементов , — количество объектов веса . Тогда количество последовательностей веса можно вычислить как . |
Подсчет битовых векторов длины
Пусть битовых векторов, .
, — множество всехТогда,
.Подсчет Seq из маленьких и больших элементов
Пусть
, , — множество всех последовательностей из маленьких и больших элементов, , .Тогда, [1].
, где — -ое число ФибоначчиПодсчет подвешенных непомеченных деревьев с порядком на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:- .
- число Каталана. , где — -ое
Множества(PSet)
Утверждение: |
Пусть — множество из различных объектов, — множество всех множеств составленных из элементов , — количество объектов веса . Тогда количество множеств суммарного веса можно вычислить как , где — количество таких множеств, что они содержат объекты, вес которых не больше чем . |
Количество PSet из элементов или
Пусть
, — множество всех множеств из , , . Тогда , где .- .
- .
- .
- .
- Для , .
Количество разбиений на слагаемые
Пусть разбиений на слагаемые, , . Тогда,
, — множество всех- динамического программирования. , где , что, как не сложно заметить, соответствует формуле, полученной методом
Мультимножества(MSet)
Утверждение: |
Пусть — множество из различных объектов, — множество всех мультимножеств из элементов , — количество объектов веса . Тогда количество мультимножеств из объектов суммарного веса можно вычислить как , где — количество таких мультимножеств, что они содержат объекты, вес которых не больше чем . |
Количество MSet из элементов или
Пусть
, — множество всех множеств из , , .- Тогда, , где
- .
- .
- .
- .
- .
Подсчет подвешенных непомеченных деревьев без порядка на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:- .
- .
- .
Количество таких деревьев с [2]
вершинами образуют последовательностьПары(Pair)
Утверждение: |
Пусть , — множества из различных объектов, — множество всех пар объектов, составленных из элементов и . — количество объектов веса , составленных из элементов , а — соответственно для . Тогда количество пар из объектов суммарного веса можно вычислить как . |
Количество подвешенных неполных двоичных деревьев
Пусть
— количество таких деревьев с вершинами, . — множество всех пар из данных деревьев. Чтобы получить двоичное дерево из вершин, достаточно взять вершину и подвесить к ней левого и правого сына с суммарным количеством вершин . Тогда:- число Каталана. , где — -ое
Циклы(Cycle)
Утверждение: |
Пусть — множество из различных объектов, — множество всех циклов из элементов , — количество объектов веса .
Тогда количество циклов веса По можно вычислить как , где — количество циклов веса длины . лемме Бёрнсайда , где — количество стабилизаторов для циклического сдвига на . |
Найдем
в общем случае.Пусть наибольший общий делитель. Заметим, что в -ой перестановке на -ой позиции стоит элемент . Также, заметим, что элемент переходит в элемент , где . Из этого следует, что длина цикла для -ой перестановки равна , где — наименьшее общее кратное.
—Также заметим, что если вес
нельзя равномерно распределить по всей длине цикла, то стабилизатор равен .
Где
— число способов упорядочить набор из элементов суммарного веса и, причем .
Задача об ожерельях
Решим данным способом задачу об ожерельях. Пусть необходимый вес это количество бусинок, а — количество цветов. При чем каждая бусинка весит . То есть .
так как невозможно набрать вес менее чем бусинами при весе бусин .
. Поскольку все бусины имеют одинаковый вес , то
В итоге,
.Производящие функции
Для анализа свойств таких больших групп часто применяют метод производящих функций. Рассмотренные классы имеют следующие производящие функции:
См.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке