Эргодическая марковская цепь — различия между версиями
Ponomarev (обсуждение | вклад) м |
Ponomarev (обсуждение | вклад) м (→Классификация эргодических цепей) |
||
Строка 13: | Строка 13: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | В эргодической цепи можно выделить '''циклические классы''' (англ. ''cyclic classes''). Количество циклических классов <tex> d </tex> называют '''периодом цепи''', если цепь состоит целиком из одного циклического класса, её называют [[Регулярная марковская цепь|регулярной]]. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые '''d''' шагов она оказывается в одном и том же циклическом классе. | + | В эргодической цепи можно выделить '''циклические классы''' (англ. ''cyclic classes''). Количество циклических классов <tex> d </tex> называют '''периодом цепи''' (англ. ''period of Markov chain''), если цепь состоит целиком из одного циклического класса, её называют [[Регулярная марковская цепь|регулярной]]. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые '''d''' шагов она оказывается в одном и том же циклическом классе. |
}} | }} | ||
Версия 12:13, 8 марта 2018
Определение: |
Эргодическая марковская цепь (англ. ergodic Markov chain) — марковская цепь, целиком состоящая из одного эргодического класса. |
Содержание
Стационарный режим
Эргодические марковские цепи описываются сильно связным графом. Это означает, что в такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.
Для эргодических цепей при достаточно большом времени функционирования (
) наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени, то есть: .Классификация эргодических цепей
Определение: |
В эргодической цепи можно выделить циклические классы (англ. cyclic classes). Количество циклических классов регулярной. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые d шагов она оказывается в одном и том же циклическом классе. | называют периодом цепи (англ. period of Markov chain), если цепь состоит целиком из одного циклического класса, её называют
Таким образом, эргодические цепи делятся на регулярные и циклические.
Эргодическая теорема
Определение: |
Эргодическое (стационарное) распределение — распределение | , такое что и (где — вероятность оказаться в -ом состоянии, выйдя из -ого, через переходов).
Для регулярных цепей
Доказательство теоремы для случая регулярных цепей приведено в конспекте про регулярные цепи.
Для циклических цепей
Теорема (Эргодическая теорема): |
Для любой эргодической цепи последовательность степеней суммируется по Эйлеру к предельной матрице , и эта предельная матрица имеет вид , где — положительный вероятностный вектор, - вектор-столбец из единиц. |
Доказательство: |
В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях , которые периодически повторяются. Таким образом, никакая степень матрицы переходов не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру.Рассмотрим матрицу при некотором . Эта матрица является переходной матрицей. Она имеет положительные элементы на всех тех же местах, что и , следовательно, она также задает эргодическую цепь. Также диагональные элементы этой матрицы положительны. Значит, в каждое состояние можно возвратиться за один шаг, а это значит, что . Таким образом, новая цепь является регулярной.Из эргодической теоремы для регулярных цепей следует, что стремится к матрице , где — положительный вероятностный вектор. Таким образом: |
Следствия
Теорема: |
Если — объекты из предыдущей теоремы. Тогда справедливы факты:
|
Доказательство: |
Домножим на . Таким образом, мы получим, что предел последовательности в смысле Эйлера равен . Значит, первый факт доказан.
следует, что и поскольку , то . Получается, что второй факт доказан.
|
Пример
Самым простым примером циклической цепи является цепь из двух состояний, с переходной матрицей:
- .
Стационарным распределением этой цепи будет
.Ссылки
Источники информации
- Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.