Симуляция одним распределением другого — различия между версиями
(→Распределение) |
|||
Строка 1: | Строка 1: | ||
− | + | ||
==Распределение== | ==Распределение== | ||
− | |||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | '''Распределение вероятностей'''{{---}} закон, описывающий область значений случайной величины и вероятность их исхода. }} | + | '''Распределение вероятностей''' {{---}} закон, описывающий область значений случайной величины и вероятность их исхода. }} |
+ | [[Файл:Распределение1_4.JPG|200px|thumb|right|Геометрическое распределение с p = 3/4]] | ||
+ | |||
+ | Законом распределения дискретной случайной величины <tex>\xi</tex> называется таблица: | ||
+ | <tex>\xi: \begin{pmatrix} | ||
+ | x_1 & x_2 & \ldots & x_n \\ | ||
+ | p_1 & p_2 & \ldots & p_n\end{pmatrix}, </tex> | ||
− | + | где <tex>x_1 < x_2 < \ldots < x_n</tex> {{---}} всевозможные значения величины <tex>\xi,</tex> а <tex>p_i(i = 1, \ldots, | |
+ | n)</tex> {{---}} их вероятности, то есть <tex>p_i = P(\xi = x_i).</tex> | ||
+ | |||
+ | При этом должно выполняться равенство: <tex>p_1 + p_2 + \ldots + p_n = 1.</tex> | ||
==Примеры распределений== | ==Примеры распределений== | ||
Строка 17: | Строка 25: | ||
Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты". | Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты". | ||
Например, для создания схемы с двумя исходами $A_1$ и $A_2$: | Например, для создания схемы с двумя исходами $A_1$ и $A_2$: | ||
− | + | $P(A_1)=\dfrac{3}{4}$ $,$ $P(A_2)=\dfrac{1}{4}$ | |
можно из датчика случайных двоичных величин получить два результата "честной монеты" $\delta_1$ и $\delta_2$ и, например, при $\delta_1 = \delta_2 = 1$ выработать исход $A_2$, а в остальных случаях $A_1$. | можно из датчика случайных двоичных величин получить два результата "честной монеты" $\delta_1$ и $\delta_2$ и, например, при $\delta_1 = \delta_2 = 1$ выработать исход $A_2$, а в остальных случаях $A_1$. | ||
Аналогично для схемы с четырьмя исходами | Аналогично для схемы с четырьмя исходами | ||
− | + | $P(A_1)=\dfrac{3}{16}$ $,$ $P(A_2)=\dfrac{1}{16}$ $,$ $P(A_3)=\dfrac{8}{16}$ $,$ $P(A_4)=\dfrac{4}{16}$ | |
можно получить четыре результата "честной монеты" $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$. | можно получить четыре результата "честной монеты" $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$. | ||
Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий. | Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий. | ||
Строка 26: | Строка 34: | ||
:#Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ результатами "честной монеты", в которой $r$ наборов используются для выработки случайного исхода, а остальные $2^{k}-r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная $r2^{-k}$, тем схема будет эффективнее. | :#Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ результатами "честной монеты", в которой $r$ наборов используются для выработки случайного исхода, а остальные $2^{k}-r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная $r2^{-k}$, тем схема будет эффективнее. | ||
Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$ это случайная величина. Её математическое ожидание: | Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$ это случайная величина. Её математическое ожидание: | ||
− | + | $E\lambda = \dfrac{1}{2}\cdot1+\dfrac{1}{4}\cdot2+\dfrac{1}{8}\cdot3+\dfrac{1}{16}\cdot3+\dfrac{1}{16}\cdot4 = 1\dfrac{7}{8}$ | |
− | Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \ | + | Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \leqslant s_i$. Найденное значение индекса $i$ и определяет исход $A_i$. |
Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам. | Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам. | ||
Строка 35: | Строка 43: | ||
Допустим у нас есть распределение <tex>p.</tex> Нам нужно получить распределение <tex>q</tex>. | Допустим у нас есть распределение <tex>p.</tex> Нам нужно получить распределение <tex>q</tex>. | ||
− | Для начала рассмотрим случай, когда все <tex>p_i = \ | + | Для начала рассмотрим случай, когда все <tex>p_i = \dfrac{1}{k},</tex> а в распределении <tex>q </tex> количество элементарных исходов равно <tex>2.</tex> |
− | Проводим эксперимент: если попадаем в область пересекающуюся с <tex> q_1 </tex> и <tex> q_2,</tex> то увеличиваем ее и повторяем эксперимент. На рисунке слева красным обозначенно распределение <tex> q. </tex> Вероятность того, что на этом шаге эксперимент не закончится {{---}} <tex>\ | + | Проводим эксперимент: если попадаем в область пересекающуюся с <tex> q_1 </tex> и <tex> q_2,</tex> то увеличиваем ее и повторяем эксперимент. На рисунке слева красным обозначенно распределение <tex> q. </tex> Вероятность того, что на этом шаге эксперимент не закончится {{---}} <tex>\dfrac{1}{k}.</tex> Математическое ожидание количества экспериментов {{---}} <tex> \dfrac{k}{k-1}, max(\dfrac{k}{k-1}) = 2 (</tex>при <tex>k = 2) </tex> |
[[Файл:Sim pic2.JPG|170px|right|thumb|Количество элементарных исходов распределения q равно n]] | [[Файл:Sim pic2.JPG|170px|right|thumb|Количество элементарных исходов распределения q равно n]] | ||
− | Теперь рассмотрим случай, когда все элементарные исходы <tex>p_i</tex> по-прежнему равновероятны <tex>(p_i = \ | + | Теперь рассмотрим случай, когда все элементарные исходы <tex>p_i</tex> по-прежнему равновероятны <tex>(p_i = \dfrac{1}{k}),</tex>а количество элементарных исходов распределения <tex>q</tex> равно <tex>n (\sum\limits_{j=1}^{n}q_j = 1).</tex> Повторим эксперимент <tex> t </tex> раз. |
− | <tex> k^t \ | + | <tex> k^t \geqslant 2n, t \geqslant \log\limits_{k}2n </tex> |
Отрезок разбился на <tex> k^t </tex> отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов <tex> \approx 2t </tex> | Отрезок разбился на <tex> k^t </tex> отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов <tex> \approx 2t </tex> | ||
Строка 50: | Строка 58: | ||
<tex>q_j, \sum\limits_{j}q_j = 1</tex> | <tex>q_j, \sum\limits_{j}q_j = 1</tex> | ||
− | Берем <tex>p_i</tex>, и пусть оно максимальной длины. Проводим <tex>t</tex> экспериментов. <tex>{p_i}^t < \ | + | Берем <tex>p_i</tex>, и пусть оно максимальной длины. Проводим <tex>t</tex> экспериментов. <tex>{p_i}^t < \dfrac{1}{2n}, </tex> все остальные еще меньше. Суммарная длина отрезков не больше <tex>\dfrac{1}{2}.</tex> Нужно <tex> t \geqslant \log\limits_{p}\dfrac{1}{2n} </tex> |
+ | Таким образом, из любого исходного распределения можно получить нужное нам распределение. | ||
− | |||
− | |||
==См. также== | ==См. также== | ||
*[[Условная вероятность]] | *[[Условная вероятность]] | ||
Строка 62: | Строка 69: | ||
==Литература== | ==Литература== | ||
− | *Боровков А.А. Математическая статистика: оценка параметров, проверка гипотез. - М., Физматлит, 1984. | + | *Боровков А.А. Математическая статистика: оценка параметров, проверка гипотез. {{---}} М., Физматлит, 1984, {{---}} стр. 71. |
− | *[http://sheen.me/books/spec/apia.djvu Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн - Алгоритмы. Построение и анализ | + | *[http://sheen.me/books/spec/apia.djvu Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн {{---}} Алгоритмы. Построение и анализ {{---}} М. : ООО "И. Д. Вильямс", 2013. {{---}} 1328 с. {{---}} стр. 1254.] |
− | *Романовский И.В. | + | *Романовский И. В. {{---}} Элементы теории вероятностей и математической статистики (теория и задачи): учебное пособие. {{---}} Омск, издатель ИП Скорнякова Е.В., 2012. {{---}} 189 с. {{---}} стр. 34. |
+ | |||
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория: Теория вероятности ]] | [[Категория: Теория вероятности ]] |
Версия 22:10, 10 марта 2018
Содержание
Распределение
Определение: |
Распределение вероятностей — закон, описывающий область значений случайной величины и вероятность их исхода. |
Законом распределения дискретной случайной величины
называется таблица:где
— всевозможные значения величины а — их вероятности, то естьПри этом должно выполняться равенство:
Примеры распределений
- Биномиальное распределение
- Нормальное распределение
- Равномерное распределение
Симуляция распределений
Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты". Например, для создания схемы с двумя исходами $A_1$ и $A_2$: $P(A_1)=\dfrac{3}{4}$ $,$ $P(A_2)=\dfrac{1}{4}$ можно из датчика случайных двоичных величин получить два результата "честной монеты" $\delta_1$ и $\delta_2$ и, например, при $\delta_1 = \delta_2 = 1$ выработать исход $A_2$, а в остальных случаях $A_1$. Аналогично для схемы с четырьмя исходами $P(A_1)=\dfrac{3}{16}$ $,$ $P(A_2)=\dfrac{1}{16}$ $,$ $P(A_3)=\dfrac{8}{16}$ $,$ $P(A_4)=\dfrac{4}{16}$ можно получить четыре результата "честной монеты" $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$. Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий.
- Можно приблизить вероятности двоичными дробями (с любой точностью), далее работать с полученными приближёнными значениями
- Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ результатами "честной монеты", в которой $r$ наборов используются для выработки случайного исхода, а остальные $2^{k}-r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная $r2^{-k}$, тем схема будет эффективнее.
Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$ это случайная величина. Её математическое ожидание: $E\lambda = \dfrac{1}{2}\cdot1+\dfrac{1}{4}\cdot2+\dfrac{1}{8}\cdot3+\dfrac{1}{16}\cdot3+\dfrac{1}{16}\cdot4 = 1\dfrac{7}{8}$ Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \leqslant s_i$. Найденное значение индекса $i$ и определяет исход $A_i$.
Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам.
Общий случай
Допустим у нас есть распределение
Нам нужно получить распределение .Для начала рассмотрим случай, когда все
а в распределении количество элементарных исходов равно Проводим эксперимент: если попадаем в область пересекающуюся с и то увеличиваем ее и повторяем эксперимент. На рисунке слева красным обозначенно распределение Вероятность того, что на этом шаге эксперимент не закончится — Математическое ожидание количества экспериментов — приТеперь рассмотрим случай, когда все элементарные исходы
по-прежнему равновероятны а количество элементарных исходов распределения равно Повторим эксперимент раз.
Отрезок разбился на
отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов
Берем
, и пусть оно максимальной длины. Проводим экспериментов. все остальные еще меньше. Суммарная длина отрезков не больше Нужно
Таким образом, из любого исходного распределения можно получить нужное нам распределение.
См. также
Литература
- Боровков А.А. Математическая статистика: оценка параметров, проверка гипотез. — М., Физматлит, 1984, — стр. 71.
- Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн — Алгоритмы. Построение и анализ — М. : ООО "И. Д. Вильямс", 2013. — 1328 с. — стр. 1254.
- Романовский И. В. — Элементы теории вероятностей и математической статистики (теория и задачи): учебное пособие. — Омск, издатель ИП Скорнякова Е.В., 2012. — 189 с. — стр. 34.