Вещественные числа — различия между версиями
м |
м (даешь моделей!) |
||
| Строка 110: | Строка 110: | ||
Для анализа важно то, что для <tex> \mathbb R </tex> выполняется аксиома непрерывности. | Для анализа важно то, что для <tex> \mathbb R </tex> выполняется аксиома непрерывности. | ||
| − | Существует несколько моделей построения <tex> \mathbb R </tex> : | + | Существует несколько [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B5_%D1%81%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D1%8B_%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F_%D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%B0 моделей построения] <tex> \mathbb R </tex> : |
| − | # Модель Дедекинда | + | # [http://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%B4%D0%B5%D0%BA%D0%B8%D0%BD%D0%B4%D0%BE%D0%B2%D0%BE_%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5 Модель Дедекинда] |
# Модель Вейерштрасса | # Модель Вейерштрасса | ||
# Модель Кантора | # Модель Кантора | ||
Версия 03:51, 3 января 2011
Содержание
Натуральные числа
Множество натуральных чисел определяется следующим образом:
За числом в натуральном ряде непосредственно следует , между и других нет.
Гильберт:
Натуральные числа — первичные элементы, природа которых не обсуждается, все остальное базируется на этом.
Целые числа
Множество целых чисел . Также
Рациональные числа
Множество рациональных чисел
Множество рациональных чисел упорядочено, то есть всегда выполняется только один из трех случаев: или
Модуль
| Определение: |
| — модуль или абсолютная величина числа x |
Свойства модуля:
Аксиома Архимеда
В множестве выполняется аксиома Архимеда:
Дополнение множества рациональных чисел
Пусть — два числовых множества.
| Определение: |
| Запись означает, что . |
Аналогично определяются записи типа , и т. д. и т. п.
Если , то запись означает, что .
Неполнота числовой оси
| Утверждение: |
Пусть
Тогда |
|
Допустим, что такое существует и . Тогда возможны три случая: Случай невозможен. Докажем это. Предположим, что , Значит число можно представить в виде несократимой дроби . Тогда: 2 - простое, значит делится на , противоречие. Возможны два случая: либо , либо . Рассмотрим первый из них, второй доказывается аналогичным образом 1) Для всех рациональных
Заметим, что если , то ; Для такого По предположению, , противоречие. |
Этим утверждением обнаруживается серьезный пробел во множестве рациональных чисел. Для его ликвидации вводятся некоторые объекты. При таком пополнении должны выполняться:
- 4 арифметических действия с сохранением законов арифметики.
- Сохранение упорядоченности.
- Выполнение аксиомы непрерывности:
Пусть и — 2 произвольных подмножества из пополненного множества рациональных чисел, и , то в пополненном множестве
Получим множество, называемое множеством вещественных чисел — .
Из разбора ясно, что мы стоим на аксиоматических позициях.
Для анализа важно то, что для выполняется аксиома непрерывности.
Существует несколько моделей построения :
- Модель Дедекинда
- Модель Вейерштрасса
- Модель Кантора
Базируясь на аксиоме Архимеда и непрерывности, можно установить, что всюду плотно на :
В любом вещественном интервале найдется рациональное число.
Для нас этот факт важен тем, что он гарантирует единственность пополнения для выполнения аксиомы непрерывности.
Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу.