Алгоритм Витерби — различия между версиями
Tindarid (обсуждение | вклад) (→Описание) |
Tindarid (обсуждение | вклад) (→Алгоритм) |
||
Строка 23: | Строка 23: | ||
'''Входные данные:''' | '''Входные данные:''' | ||
− | #Пространство наблюдений <tex>O =\{o_1,o_2 \ldots o_N\}</tex> | + | #Пространство наблюдений <tex>\mathtt{O =\{o_1,o_2 \ldots o_N\}}</tex> |
− | #Пространство состояний <tex>S =\{s_1,s_2 \ldots s_K\}</tex> | + | #Пространство состояний <tex>\mathtt{S =\{s_1,s_2 \ldots s_K\}}</tex> |
− | #Последовательность наблюдений <tex>Y =\{y_1,y_2 \ldots y_T\}</tex> | + | #Последовательность наблюдений <tex>\mathtt{Y =\{y_1,y_2 \ldots y_T\}}</tex> |
− | #Матрица <tex>A</tex> переходов из <tex>i</tex>-того состояния в <tex>j</tex>-ое, размером <tex>K \times K</tex> | + | #Матрица <tex>\mathtt{A}</tex> переходов из <tex>\mathtt{i}</tex>-того состояния в <tex>\mathtt{j}</tex>-ое, размером <tex>\mathtt{K \times K}</tex> |
− | #Матрица эмиссии <tex> B </tex> размера <tex>K \times N</tex>, которая определяет вероятность наблюдения <tex>o_j</tex> из состояния <tex>s_i</tex> | + | #Матрица эмиссии <tex>\mathtt{B}</tex> размера <tex>\mathtt{K \times N}</tex>, которая определяет вероятность наблюдения <tex>\mathtt{o_j}</tex> из состояния <tex>\mathtt{s_i}</tex> |
− | #Массив начальных вероятностей <tex>\pi</tex> размером <tex>K</tex>, показывающий вероятность того, что начальное состояние <tex>s_i</tex> | + | #Массив начальных вероятностей <tex>\mathtt{\pi}</tex> размером <tex>\mathtt{K}</tex>, показывающий вероятность того, что начальное состояние <tex>\mathtt{s_i}</tex> |
'''Выходные данные''': | '''Выходные данные''': | ||
− | <tex>X =\{x_1,x_2 \ldots x_T\}</tex> {{---}} последовательность состояний, которые привели к последовательности наблюдений <tex>Y</tex>. | + | <tex>\mathtt{X =\{x_1,x_2 \ldots x_T\}}</tex> {{---}} последовательность состояний, которые привели к последовательности наблюдений <tex>\mathtt{Y}</tex>. |
'''Алгоритм:''' | '''Алгоритм:''' | ||
− | Создадим две матрицы <tex>TState</tex> и <tex>TIndex</tex> размером <tex>K \times T</tex>. Каждый элемент <tex>TState[i,j]</tex> содержит вероятность того, что на <tex>j</tex>-ом шаге мы находимся в состоянии <tex>s_i</tex>. Каждый элемент <tex>TIndex[i,j]</tex> содержит индекс наиболее вероятного состояния на <tex>{j-1}</tex>-ом шаге. | + | Создадим две матрицы <tex>\mathtt{TState}</tex> и <tex>\mathtt{TIndex}</tex> размером <tex>\mathtt{K \times T}</tex>. Каждый элемент <tex>\mathtt{TState}[\mathtt{i,j}]</tex> содержит вероятность того, что на <tex>\mathtt{j}</tex>-ом шаге мы находимся в состоянии <tex>\mathtt{s_i}</tex>. Каждый элемент <tex>\mathtt{TIndex}[\mathtt{i,j}]</tex> содержит индекс наиболее вероятного состояния на <tex>{\mathtt{j-1}}</tex>-ом шаге. |
− | '''Шаг 1.''' Заполним первый столбец матриц <tex>TState</tex> на основании начального распределения, и <tex>TIndex</tex> нулями. | + | '''Шаг 1.''' Заполним первый столбец матриц <tex>\mathtt{TState}</tex> на основании начального распределения, и <tex>\mathtt{TIndex}</tex> нулями. |
− | '''Шаг 2.''' Последовательно заполняем следующие столбцы матриц <tex>TState</tex> и <tex>TIndex</tex>, используя матрицы вероятностей эмиссий и переходов. | + | '''Шаг 2.''' Последовательно заполняем следующие столбцы матриц <tex>\mathtt{TState}</tex> и <tex>\mathtt{TIndex}</tex>, используя матрицы вероятностей эмиссий и переходов. |
− | '''Шаг 3.''' Рассматривая максимальные значения в столбцах матрицы <tex>TIndex</tex>, начиная с последнего столбца, выдаем ответ. | + | '''Шаг 3.''' Рассматривая максимальные значения в столбцах матрицы <tex>\mathtt{TIndex}</tex>, начиная с последнего столбца, выдаем ответ. |
'''Доказательство корректности:''' | '''Доказательство корректности:''' | ||
Наиболее вероятная последовательность скрытых состояний получается следующими реккурентными соотношениями: | Наиболее вероятная последовательность скрытых состояний получается следующими реккурентными соотношениями: | ||
− | *<tex>V_{1,k} = \mathrm{P}(y_1 \mid k) \cdot \pi_k</tex> | + | *<tex>\mathtt{V_{1,k} = \mathrm{P}(\mathtt{y_1 \mid k}) \cdot \pi_k}</tex> |
− | *<tex>V_{t,k} = \max_{x \in S} \left( | + | *<tex>\mathtt{V_{t,k} = \max_{x \in S} \left(\mathrm{P}(\mathtt{y_t \mid k}) \cdot A_{x,k} \cdot V_{t-1,x}\right)}</tex> |
− | Где <tex>V_{t,k}</tex> это вероятность наиболее вероятной | + | Где <tex>\mathtt{V_{t,k}}</tex> это вероятность наиболее вероятной последовательности, которая ответственна за первые <tex>\mathtt{t}</tex> наблюдений, у которых <tex>\mathtt{k}</tex> является завершающим состоянием. Путь Витерби может быть получен сохранением обратных указателей, которые помнят какое состояние было использовано во втором равенстве. Пусть <tex>\mathrm{Ptr}(\mathtt{k,t})</tex> {{---}} функция, которая возвращает значение <tex>\mathtt{x}</tex>, использованное для подсчета <tex>\mathtt{V_{t,k}}</tex> если <tex>\mathtt{t > 1}</tex>, или <tex>\mathtt{k}</tex> если <tex>\mathtt{t=1}</tex>. Тогда: |
− | *<tex>x_T = \arg\max_{x \in S} (V_{T,x})</tex> | + | *<tex>\mathtt{x_T = \arg\max_{x \in S} (V_{T,x})}</tex> |
− | *<tex>x_{t-1} = \mathrm{Ptr}(x_t,t)</tex> | + | *<tex>\mathtt{x_{t-1} = \mathrm{Ptr}(x_t,t)}</tex> |
== Псевдокод == | == Псевдокод == |
Версия 18:58, 22 апреля 2018
Содержание
История
Алгоритм Витерби (англ. Viterbi algorithm) был представлен в 1967 году для декодирования сверточных кодов, поступающих через зашумленный канал связи. В 1969 году Омура (Omura) показал, что основу алгоритма Витерби составляет оценка максимума правдоподобия, которая является популярным статистическим методом для создания статистической модели на основе данных и обеспечения оценки параметров модели.
Определение: |
Сверточный код (англ. Convolutional code ) — это корректирующий ошибки код, в котором
|
Описание
Алгоритм Витерби позволяет сделать наиболее вероятное предположение о последовательности состояний скрытой Марковской модели на основе последовательности наблюдений.
Определение: |
Путь Витерби (англ. Viterbi path) — наиболее правдоподобная (наиболее вероятная) последовательность скрытых состояний. |
Предположения, которые делает алгоритм:
- Скрытые и наблюдаемые события должны быть последовательностью, которая чаще всего упорядочена по времени.
- Каждое скрытое событие должно соответствовать только одному наблюдаемому.
- Вычисление наиболее вероятной скрытой последовательности до момента зависит только от наблюдаемого события в этот момент времени и наиболее вероятной последовательности до момента (динамическое программирование).
Алгоритм
Входные данные:
- Пространство наблюдений
- Пространство состояний
- Последовательность наблюдений
- Матрица переходов из -того состояния в -ое, размером
- Матрица эмиссии размера , которая определяет вероятность наблюдения из состояния
- Массив начальных вероятностей размером , показывающий вероятность того, что начальное состояние
Выходные данные:
— последовательность состояний, которые привели к последовательности наблюдений .
Алгоритм:
Создадим две матрицы
и размером . Каждый элемент содержит вероятность того, что на -ом шаге мы находимся в состоянии . Каждый элемент содержит индекс наиболее вероятного состояния на -ом шаге.Шаг 1. Заполним первый столбец матриц
на основании начального распределения, и нулями.Шаг 2. Последовательно заполняем следующие столбцы матриц
и , используя матрицы вероятностей эмиссий и переходов.Шаг 3. Рассматривая максимальные значения в столбцах матрицы
, начиная с последнего столбца, выдаем ответ.Доказательство корректности:
Наиболее вероятная последовательность скрытых состояний получается следующими реккурентными соотношениями:
Где
это вероятность наиболее вероятной последовательности, которая ответственна за первые наблюдений, у которых является завершающим состоянием. Путь Витерби может быть получен сохранением обратных указателей, которые помнят какое состояние было использовано во втором равенстве. Пусть — функция, которая возвращает значение , использованное для подсчета если , или если . Тогда:Псевдокод
Функция возвращает вектор
: последовательность номеров наиболее вероятных состояний, которые привели к данным наблюдениям.Viterbi() for to for to for to // функция arg max() ищет максимум выражения в скобках и возвращает аргумент(в нашем случае ), при котором достигается этот максимум for downto return
Таким образом, алгоритму требуется
времени.Применение
Алгоритм используется в CDMA и GSM цифровой связи, в модемах и космических коммуникациях. Он нашел применение в распознавании речи и письма, компьютерной лингвистике и биоинформатике, а также в алгоритме свёрточного декодирования Витерби.