Примеры кода на Scala — различия между версиями
Строка 1: | Строка 1: | ||
− | + | Раздел в разработке | |
[<span style="color:#faecc8">WIP</span>] | [<span style="color:#faecc8">WIP</span>] | ||
+ | |||
==Популярные библиотеки== | ==Популярные библиотеки== | ||
* Breeze<ref>[https://github.com/scalanlp/breeze Breeze]</ref> {{---}} библиотека, которая копирует реализует идеи строения структур данных из MATLAB<ref>[https://www.mathworks.com/help/matlab/structures.html MATLAB, structures]</ref> и NumPy<ref>[https://en.wikipedia.org/wiki/NumPy NumPy wiki]</ref>. Breeze позволяет быстро манипулировть данными и позволяет реализовавать матричные и веторные операции, решать задачи оптимизации, обрабатывать сигналы устройств. | * Breeze<ref>[https://github.com/scalanlp/breeze Breeze]</ref> {{---}} библиотека, которая копирует реализует идеи строения структур данных из MATLAB<ref>[https://www.mathworks.com/help/matlab/structures.html MATLAB, structures]</ref> и NumPy<ref>[https://en.wikipedia.org/wiki/NumPy NumPy wiki]</ref>. Breeze позволяет быстро манипулировть данными и позволяет реализовавать матричные и веторные операции, решать задачи оптимизации, обрабатывать сигналы устройств. | ||
Строка 7: | Строка 8: | ||
* Apache Spark MLlib<ref>[https://spark.apache.org/mllib/ Apache Spark MLlib]</ref> {{---}} построенная на Spark<ref>[https://spark.apache.org/ Apache Spark]</ref> имеет большой набор алгоритмов, написанный на Scala. | * Apache Spark MLlib<ref>[https://spark.apache.org/mllib/ Apache Spark MLlib]</ref> {{---}} построенная на Spark<ref>[https://spark.apache.org/ Apache Spark]</ref> имеет большой набор алгоритмов, написанный на Scala. | ||
* DeepLearning.scala <ref>[https://deeplearning.thoughtworks.school/ DeppLearning.scala]</ref> {{---}} набор инструментов для глубокого обучения<ref>[http://neerc.ifmo.ru/wiki/index.php?title=%D0%93%D0%BB%D1%83%D0%B1%D0%BE%D0%BA%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5 Глубокое обучение]</ref>. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений. | * DeepLearning.scala <ref>[https://deeplearning.thoughtworks.school/ DeppLearning.scala]</ref> {{---}} набор инструментов для глубокого обучения<ref>[http://neerc.ifmo.ru/wiki/index.php?title=%D0%93%D0%BB%D1%83%D0%B1%D0%BE%D0%BA%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5 Глубокое обучение]</ref>. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений. | ||
+ | |||
+ | ==Примеры кода== | ||
+ | ===Классификация=== | ||
== Примечания == | == Примечания == | ||
<references/> | <references/> |
Версия 19:11, 12 января 2019
Раздел в разработке [WIP]
Популярные библиотеки
- Breeze[1] — библиотека, которая копирует реализует идеи строения структур данных из MATLAB[2] и NumPy[3]. Breeze позволяет быстро манипулировть данными и позволяет реализовавать матричные и веторные операции, решать задачи оптимизации, обрабатывать сигналы устройств.
- Epic[4] — часть ScalaNLP, позволяющая парсить и обрабатывать текст, поддерживающая использование GPU. Так же имеет фрэймворк для предсказаний текста.
- Smpile[5] — развивающийся проект, похожий на scikit-learn[6], разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого.
- Apache Spark MLlib[7] — построенная на Spark[8] имеет большой набор алгоритмов, написанный на Scala.
- DeepLearning.scala [9] — набор инструментов для глубокого обучения[10]. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений.