Алгоритм вырезания соцветий — различия между версиями
Kot (обсуждение | вклад) |
Kot (обсуждение | вклад) (→Алгоритм вырезания соцветий) |
||
| Строка 41: | Строка 41: | ||
Разобьем каждое неориентированное ребро <tex>(w, v)</tex> на два ориентированных ребра <tex>(w, v)</tex> и <tex>(v, w)</tex>. | Разобьем каждое неориентированное ребро <tex>(w, v)</tex> на два ориентированных ребра <tex>(w, v)</tex> и <tex>(v, w)</tex>. | ||
Каждое ребро может принимать одно из трех состояний: непосещенное, четное и нечетное. | Каждое ребро может принимать одно из трех состояний: непосещенное, четное и нечетное. | ||
| − | Для каждой вершины из паросочетания <tex>v</tex> в <tex>mate(v)<tex> будем хранить вершину, смежную <tex>v</tex>. | + | Для каждой вершины из паросочетания <tex>v</tex> в <tex>mate(v)</tex> будем хранить вершину, смежную <tex>v</tex>. |
| + | Также для каждой вершины <tex>v</tex> алгоритм в <tex>p(v)</tex> будет хранить родителя в дереве обхода. | ||
| + | |||
| + | Сначала проинициализируем все вершины из паросочетания непосещенными, все остальные - четными. | ||
Версия 21:28, 15 января 2011
Паросочетание в недвудольном графе
| Определение: |
| Соцветие графа - цикл, состоящий из ребер, из которых только входят в соцветие . |
| Определение: |
| Cжатие соцветия - граф , полученный из сжатием соцветия в одну псевдо-вершину. |
| Определение: |
| База соцветия - вершина соцветия, в которую входит ребро не из данного соцветия. |
Теорема Эдмондса
| Теорема: |
Пусть в графе существует соцветие . Тогда в существует удлиняющий путь тогда и только тогда, когда существует удлиняющий путь в |
| Доказательство: |
|
Пусть граф - граф, полученный сжатием соцветия в псевдо-вершину .
Пусть путь является удлиняющим в графе . Если не проходит через , то тогда он будет удлиняющим и в графе .
Пусть путь является удлиняющим путём в графе . Если не проходит через , то тогда он будет удлиняющим и в графе . Рассмотрим отдельно случай, когда начинается со сжатого соцветия , т.е. имеет вид . Тогда в соцветии найдётся соответствующая вершина , которая связана ребром с . Заметим, что из базы соцветия всегда найдётся чередующийся путь чётной длины до вершины . Учитывая всё вышесказанное, получаем, что путь является увеличивающим путём в графе . Пусть теперь путь проходит через псевдо-вершину , но не начинается и не заканчивается в ней. Тогда в есть два ребра, проходящих через , пусть это и . Одно из них обязательно должно принадлежать паросочетанию, однако, так как база цветка не насыщена, а все остальные вершины цикла цветка насыщены рёбрами цикла, то мы приходим к противоречию (это эквивалентно случаю отсутствия ребра из в ). Таким образом, этот случай просто невозможен. Теорема доказана. |
Алгоритм вырезания соцветий
Пусть дан произвольный граф и требуется найти максимальное паросочетание в нём.
Алгоритм строит лес, содержащий деревья удлиняющих путей, корнями которых являются вершины не из паросочетания.
Разобьем каждое неориентированное ребро на два ориентированных ребра и . Каждое ребро может принимать одно из трех состояний: непосещенное, четное и нечетное. Для каждой вершины из паросочетания в будем хранить вершину, смежную . Также для каждой вершины алгоритм в будет хранить родителя в дереве обхода.
Сначала проинициализируем все вершины из паросочетания непосещенными, все остальные - четными.