Общие понятия — различия между версиями
(Тестовое изменение) |
м (→О чём писать) |
||
Строка 1: | Строка 1: | ||
+ | == WARNING == | ||
+ | СТАТЬЯ В АКТИВНОЙ РАЗРАБОТКЕ | ||
+ | |||
+ | |||
== О чём писать == | == О чём писать == | ||
Объекты и признаки, классификация задач и подходов (с учителем и тд, классификация и тд), примеры задач | Объекты и признаки, классификация задач и подходов (с учителем и тд, классификация и тд), примеры задач | ||
+ | |||
+ | |||
+ | ----- | ||
+ | |||
+ | Machine learning problems | ||
+ | • Supervised learning | ||
+ | • Unsupervised learning | ||
+ | • Semi-supervised learning | ||
+ | • Reinforcement learning | ||
+ | • Active learning | ||
+ | • Online learning | ||
+ | • Structured prediction | ||
+ | • Model selection and validation | ||
+ | |||
+ | |||
+ | |||
+ | Supervised learning | ||
+ | A set of examples with answers is given. A | ||
+ | rule for giving answers for all possible | ||
+ | examples is required: | ||
+ | • classification; | ||
+ | • regression; | ||
+ | • learning to rank; | ||
+ | • forecasting. | ||
+ | |||
+ | |||
+ | Unsupervised learning | ||
+ | A set of examples without answers is given. | ||
+ | A rule for finding answers or some | ||
+ | regularity is required: | ||
+ | • clustering; | ||
+ | • association rules learning; | ||
+ | • recommender systems*; | ||
+ | • dimension reduction**. | ||
+ | |||
+ | |||
+ | |||
+ | How are the objects described? | ||
+ | f j ∶ X → D j , j = 1, ... , n are features or attributes. | ||
+ | Feature types: | ||
+ | • binary: D j = 0, 1 ; | ||
+ | • categorical: D j is finite; | ||
+ | • ordinal: D j is finite and ordered; | ||
+ | • numerical: D j = R. |
Версия 16:46, 22 января 2019
WARNING
СТАТЬЯ В АКТИВНОЙ РАЗРАБОТКЕ
О чём писать
Объекты и признаки, классификация задач и подходов (с учителем и тд, классификация и тд), примеры задач
Machine learning problems • Supervised learning • Unsupervised learning • Semi-supervised learning • Reinforcement learning • Active learning • Online learning • Structured prediction • Model selection and validation
Supervised learning A set of examples with answers is given. A rule for giving answers for all possible examples is required: • classification; • regression; • learning to rank; • forecasting.
Unsupervised learning
A set of examples without answers is given.
A rule for finding answers or some
regularity is required:
• clustering;
• association rules learning;
• recommender systems*;
• dimension reduction**.
How are the objects described? f j ∶ X → D j , j = 1, ... , n are features or attributes. Feature types: • binary: D j = 0, 1 ; • categorical: D j is finite; • ordinal: D j is finite and ordered; • numerical: D j = R.