Вариации регрессии — различия между версиями
Penguinni (обсуждение | вклад) |
Penguinni (обсуждение | вклад) м (→Источники информации) |
||
Строка 57: | Строка 57: | ||
==Источники информации== | ==Источники информации== | ||
− | # [http://datareview.info/article/10-tipov-regressii-kakoy-vyibrat/ 10 типов регрессии | + | # [http://datareview.info/article/10-tipov-regressii-kakoy-vyibrat/ 10 типов регрессии {{---}} какой выбрать?] |
# [http://www.machinelearning.ru/wiki/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 machinelearning.ru {{---}} Линейная регрессия (пример)] | # [http://www.machinelearning.ru/wiki/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 machinelearning.ru {{---}} Линейная регрессия (пример)] | ||
# [http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B8%D0%B4%D0%B6-%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F machinelearning.ru {{---}} Ридж-регрессия] | # [http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B8%D0%B4%D0%B6-%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F machinelearning.ru {{---}} Ридж-регрессия] | ||
# [https://ru.wikipedia.org/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%BA%D0%BE%D0%BB%D0%BB%D0%B8%D0%BD%D0%B5%D0%B0%D1%80%D0%BD%D0%BE%D1%81%D1%82%D1%8C Wikipedia {{---}} Мультиколлинеарность] | # [https://ru.wikipedia.org/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%BA%D0%BE%D0%BB%D0%BB%D0%B8%D0%BD%D0%B5%D0%B0%D1%80%D0%BD%D0%BE%D1%81%D1%82%D1%8C Wikipedia {{---}} Мультиколлинеарность] | ||
# [http://ru.learnmachinelearning.wikia.com/wiki/%D0%93%D1%80%D0%B5%D0%B1%D0%BD%D0%B5%D0%B2%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_(Ridge_regression) Гребневая регрессия (Ridge regression)] | # [http://ru.learnmachinelearning.wikia.com/wiki/%D0%93%D1%80%D0%B5%D0%B1%D0%BD%D0%B5%D0%B2%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F_(Ridge_regression) Гребневая регрессия (Ridge regression)] | ||
− | # [http://www.ccas.ru/voron/download/Regression.pdf Лекции по алгоритмам восстановления регрессии | + | # [http://www.ccas.ru/voron/download/Regression.pdf Лекции по алгоритмам восстановления регрессии К. В. Воронцов] |
− | К. В. Воронцов] | ||
# [http://statistica.ru/glossary/general/regressiya/ Словарь статистических терминов] | # [http://statistica.ru/glossary/general/regressiya/ Словарь статистических терминов] | ||
Версия 19:58, 23 января 2019
Регрессия (англ. Regression) — метод моделирования зависимости между зависимой переменной
и одной или несколькими независимыми переменными . В случае нескольких независимых переменных регрессия называется множественной (англ. multivariate regression). Цель регрессионного анализа состоит в том, чтобы оценить значение непрерывной выходной переменной по значениям входных переменных.Содержание
Линейная регрессия
Линейная регрессия (англ. Linear regression) — разновидность регрессии для моделирования линейной зависимости между зависимой и независимой переменными.
Логистическая регрессия
Логистическая регрессия (англ. Logistic regression) — разновидность регрессии для моделирования зависимости между зависимой и независимой переменными в случае, когда зависимая переменная
принимает значения в диапазоне от до .Гребневая регрессия (ридж-регрессия)
Гребневая регрессия или ридж-регрессия (англ. ridge regression) — один из методов понижения размерности. Применяется для борьбы с избыточностью данных, когда независимые переменные коррелируют друг с другом, вследствие чего проявляется неустойчивость оценок коэффициентов многомерной линейной регрессии.
Мотивация
Мультиколлинеарность (англ. multicollinearity) — наличие линейной зависимости между независимыми переменными регрессионной модели. Различают полную коллинеарность и частичную или просто мультиколлинеарность — наличие сильной корреляции между факторами.
Рассмотрим пример линейной модели:
. Пусть имеет место зависимость . Добавим к первому коэффициенту произвольное число , а из двух других коэффициентов это же число вычтем. Получаем (без случайной ошибки):
Несмотря на относительно произвольное изменение коэффициентов модели мы получили исходную модель, то есть такая модель неидентифицируема.
На практике чаще встречается проблема сильной корреляции между независимыми переменными. В этом случае оценки параметров модели получить можно, но они будут неустойчивыми.
Идея
Напомним решение для многомерной линейной регрессии:
Пример кода для Scikit-learn
Лассо-регрессия
Описание
Пример кода для Scikit-learn
Байесовская
Логическая регрессия
Другие виды регрессии
Экологическая регрессия
LAD-регрессия
Джекнайф-регрессия
См. также
- Общие понятия
- Линейная регрессия
- Логистическая регрессия
- Обзор библиотек для машинного обучения на Python
- Байесовская классификация
- Уменьшение размерности