Логистическая регрессия — различия между версиями
Строка 4: | Строка 4: | ||
Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество [[Независимые случайные величины|независимых]] переменных <tex>x_1, ... x_n</tex> на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной. | Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество [[Независимые случайные величины|независимых]] переменных <tex>x_1, ... x_n</tex> на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной. | ||
− | Итак, пусть объекты задаются $n$ числовыми признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ | + | Итак, пусть объекты задаются $n$ числовыми признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ {{---}} конечное множество меток классов и задана обучающая выборка пар «объект-ответ» <tex>X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}.</tex> |
Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида | Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида | ||
− | <center><tex>a(x, w) = \mathrm{sign}\left(\sum\limits_{j=1}^n w_j f_j(x) - w_0 \right)=\mathrm{sign}\left<x, w\right></tex></center> | + | <center><tex>a(x, w) = \mathrm{sign}\left(\sum\limits_{j=1}^n w_j f_j(x) - w_0 \right)=\mathrm{sign}\left<x, w\right></tex>,</center> |
где $w_j$ $-$ вес $j$-го признака, $w_0$ $-$ порог принятия решения, $w=\left(w_0, ..., w_n\right)$ $-$ вектор весов, $\left<x, w\right>$ $-$ скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён нулевой признак: $f_{0}(x)=-1$. | где $w_j$ $-$ вес $j$-го признака, $w_0$ $-$ порог принятия решения, $w=\left(w_0, ..., w_n\right)$ $-$ вектор весов, $\left<x, w\right>$ $-$ скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён нулевой признак: $f_{0}(x)=-1$. | ||
− | Задача обучения линейного классификатора заключается в том, чтобы по выборке $X^m$ настроить вектор весов $w$. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида: <center><tex>Q(w) = \sum\limits_{i=1}^m \ln\left( 1 + \exp( -y_i \langle x_i,w \rangle ) \right) \to \min_{w}</tex></center> | + | Задача обучения линейного классификатора заключается в том, чтобы по выборке $X^m$ настроить вектор весов $w$. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида: <center><tex>Q(w) = \sum\limits_{i=1}^m \ln\left( 1 + \exp( -y_i \langle x_i,w \rangle ) \right) \to \min_{w}</tex>,</center> |
После того, как решение $w$ найдено, становится возможным не только вычислять классификацию $a(x) = \mathrm{sign}\langle x,w \rangle$ для произвольного объекта $x$, но и оценивать апостериорные вероятности его принадлежности классам: | После того, как решение $w$ найдено, становится возможным не только вычислять классификацию $a(x) = \mathrm{sign}\langle x,w \rangle$ для произвольного объекта $x$, но и оценивать апостериорные вероятности его принадлежности классам: | ||
− | <center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex></center> | + | <center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex>,</center> |
где $\sigma(z) = \frac1{1+e^{-z}}$ {{---}} сигмоидная функция. | где $\sigma(z) = \frac1{1+e^{-z}}$ {{---}} сигмоидная функция. | ||
Строка 24: | Строка 24: | ||
*выборка прецедентов $\mathrm{X}^l=\{\left(x_1, y_1\right), ... ,\left(x_l, y_l\right)\}$ получена согласно вероятностному распределению с плотностью | *выборка прецедентов $\mathrm{X}^l=\{\left(x_1, y_1\right), ... ,\left(x_l, y_l\right)\}$ получена согласно вероятностному распределению с плотностью | ||
<tex>p\left(x, y\right)=\mathrm{P}_yp_y\left(x\right)=\mathrm{P}\left(y|x\right)p\left(x\right)</tex> | <tex>p\left(x, y\right)=\mathrm{P}_yp_y\left(x\right)=\mathrm{P}\left(y|x\right)p\left(x\right)</tex> | ||
− | где $\mathrm{P}_y$ | + | где $\mathrm{P}_y$ {{---}} ''априорные вероятности'', |
$p_y(x)$ $-$ ''функции правдоподобия'', принадлежащие экспонентному семейству плотностей (т.е. $p_y(x) = \exp \left( \langle\theta,x\rangle \cdot a(\delta) + b(\delta,\theta) + d(x,\delta) \right)$, где $a, b, d$ $-$ произвольные функции); | $p_y(x)$ $-$ ''функции правдоподобия'', принадлежащие экспонентному семейству плотностей (т.е. $p_y(x) = \exp \left( \langle\theta,x\rangle \cdot a(\delta) + b(\delta,\theta) + d(x,\delta) \right)$, где $a, b, d$ $-$ произвольные функции); | ||
*функции правдоподобия имеют равные знаения параметра разброса $\delta$ и отличаются только значениями параметра сдвига $\theta_y$; | *функции правдоподобия имеют равные знаения параметра разброса $\delta$ и отличаются только значениями параметра сдвига $\theta_y$; | ||
Строка 36: | Строка 36: | ||
<center><tex>a\left(x\right)= | <center><tex>a\left(x\right)= | ||
\mathrm{sign}\left(\lambda_+\mathrm{P}\left(+1|x\right)-\lambda_-\mathrm{P}\left(-1|x\right)\right)= | \mathrm{sign}\left(\lambda_+\mathrm{P}\left(+1|x\right)-\lambda_-\mathrm{P}\left(-1|x\right)\right)= | ||
− | \mathrm{sign}\left(\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)}-\frac{\lambda_-}{\lambda_+}\right)</tex></center> | + | \mathrm{sign}\left(\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)}-\frac{\lambda_-}{\lambda_+}\right)</tex>,</center> |
Рассмотрим отношение апостериорных вероятностей классов | Рассмотрим отношение апостериорных вероятностей классов | ||
− | <center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)}</tex></center> | + | <center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)}</tex>,</center> |
и распишем функции правдоподобия, используя экспонентную формулу с параметрами $\theta_y$ и $\delta$: | и распишем функции правдоподобия, используя экспонентную формулу с параметрами $\theta_y$ и $\delta$: | ||
− | <center><tex>\frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)} = \exp\left(\langle\left(c_+(\delta)\theta_+-c_-(\delta)\theta_-\right), x\rangle+b_+(\delta, \theta_+)-b_-(\delta, \theta_-) + \ln\frac{\mathrm{P}_+}{\mathrm{P}_-}\right)</tex></center> | + | <center><tex>\frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)} = \exp\left(\langle\left(c_+(\delta)\theta_+-c_-(\delta)\theta_-\right), x\rangle+b_+(\delta, \theta_+)-b_-(\delta, \theta_-) + \ln\frac{\mathrm{P}_+}{\mathrm{P}_-}\right)</tex>,</center> |
Рассмотрим получившуюся под экспонентой сумму: | Рассмотрим получившуюся под экспонентой сумму: | ||
Строка 48: | Строка 48: | ||
Таким образом, | Таким образом, | ||
− | <center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \mathrm{e}^{\langle w, x\rangle}</tex></center> | + | <center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \mathrm{e}^{\langle w, x\rangle}</tex>,</center> |
Разделяющая поверхность в байесовском решающем правиле определяется уравнением | Разделяющая поверхность в байесовском решающем правиле определяется уравнением | ||
− | <center><tex>\lambda_- \mathrm{P}\left(-1|x\right) = \lambda_+ \mathrm{P}\left(+1|x\right)</tex></center> | + | <center><tex>\lambda_- \mathrm{P}\left(-1|x\right) = \lambda_+ \mathrm{P}\left(+1|x\right)</tex>,</center> |
которое равносильно | которое равносильно | ||
− | <center><tex>\langle w, x\rangle - \ln\frac{\lambda_-}{\lambda_+} = 0</tex></center> | + | <center><tex>\langle w, x\rangle - \ln\frac{\lambda_-}{\lambda_+} = 0</tex>,</center> |
+ | |||
Следовательно, разделяющая поверхность линейна и первый пункт теоремы доказан. | Следовательно, разделяющая поверхность линейна и первый пункт теоремы доказан. | ||
Используя [[Формула полной вероятности|формулу полной вероятности]] получаем следующее равенство | Используя [[Формула полной вероятности|формулу полной вероятности]] получаем следующее равенство | ||
− | <center><tex>\mathrm{P}\left(+1|x\right) + \mathrm{P}\left(-1|x\right) = \sigma\left(+\langle w ,x\rangle\right) + \sigma\left(-\langle w ,x\rangle\right) = 1</tex></center> | + | <center><tex>\mathrm{P}\left(+1|x\right) + \mathrm{P}\left(-1|x\right) = \sigma\left(+\langle w ,x\rangle\right) + \sigma\left(-\langle w ,x\rangle\right) = 1</tex>,</center> |
Откуда следует: | Откуда следует: | ||
− | <center><tex>\mathrm{P}\left(y|x\right)=\sigma\left(\langle w, x\rangle y\right), y = \{-1, +1\}</tex></center> | + | <center><tex>\mathrm{P}\left(y|x\right)=\sigma\left(\langle w, x\rangle y\right), y = \{-1, +1\}</tex>,</center> |
Таким образом, второй пункт теоремы доказан. | Таким образом, второй пункт теоремы доказан. | ||
}} | }} |
Версия 23:39, 30 января 2019
Логистическая регрессия (англ. logistic regression) — метод построения линейного классификатора, позволяющий оценивать апостериорные вероятности принадлежности объектов классам.
Содержание
[убрать]Описание
Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество независимых переменных на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной.
Итак, пусть объекты задаются $n$ числовыми признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ — конечное множество меток классов и задана обучающая выборка пар «объект-ответ»
Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида
где $w_j$ $-$ вес $j$-го признака, $w_0$ $-$ порог принятия решения, $w=\left(w_0, ..., w_n\right)$ $-$ вектор весов, $\left<x, w\right>$ $-$ скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён нулевой признак: $f_{0}(x)=-1$.
Задача обучения линейного классификатора заключается в том, чтобы по выборке $X^m$ настроить вектор весов $w$. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида:После того, как решение $w$ найдено, становится возможным не только вычислять классификацию $a(x) = \mathrm{sign}\langle x,w \rangle$ для произвольного объекта $x$, но и оценивать апостериорные вероятности его принадлежности классам:
где $\sigma(z) = \frac1{1+e^{-z}}$ — сигмоидная функция.
Обоснование
С точки зрения байесовского классификатора[на 28.01.19 не создан]
Наиболее строгое обоснование логистической регрессии опирается на следующую теорему
Теорема: |
Пусть
где $\mathrm{P}_y$ — априорные вероятности, $p_y(x)$ $-$ функции правдоподобия, принадлежащие экспонентному семейству плотностей (т.е. $p_y(x) = \exp \left( \langle\theta,x\rangle \cdot a(\delta) + b(\delta,\theta) + d(x,\delta) \right)$, где $a, b, d$ $-$ произвольные функции);
Тогда
|
Доказательство: |
Напомним, что оптимальный байесовский классификатор для двух классов выглядит следущим образом: Рассмотрим отношение апостериорных вероятностей классов и распишем функции правдоподобия, используя экспонентную формулу с параметрами $\theta_y$ и $\delta$: Рассмотрим получившуюся под экспонентой сумму:
Таким образом, Разделяющая поверхность в байесовском решающем правиле определяется уравнением которое равносильно Следовательно, разделяющая поверхность линейна и первый пункт теоремы доказан. Используя формулу полной вероятности получаем следующее равенство Откуда следует: |
Примеры кода
scikit-learn
Классификатор sklearn.linear_model.LogisticRegression имеет несколько параметров, например:
- solver $-$ алгоритм, использующийся для оптимизации
- multi_class $-$ классификация на 2 или много классов
- Импортируем нужные библиотеки
from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.model_selection import train_test_split
- Выберем тренировочное и тестовое множества
iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
- Обучение
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial') model = clf.fit(X_train, y_train)
- Предсказание
y_pred = model.predict(X_test) model.score(X_test, y_test)
Пример кода на Scala
См. также
- Байесовская классификация[на 28.01.19 не создан]
- Линейная регрессия[на 28.01.19 не создан]
- Вариации регрессии
- Обзор библиотек для машинного обучения на Python
- Общие понятия
- Уменьшение размерности
Источники информации
- Логистическая регрессия $-$ курс лекций Воронцова
- Logistic regression $-$ Wikipedia
- sklearn.linear_model.LogisticRegression $-$ реализация алгоритма на scikit-learn.org