Виды ансамблей — различия между версиями
(→Эффективность: Удалено) |
(→Вероятность ошибки: Сменено на теорему Кондерса) |
||
Строка 10: | Строка 10: | ||
Взвешенное голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M \alpha_i I(f_i(x) = k), \sum \limits_i \alpha_i = 1, \alpha_i > 0</tex> | Взвешенное голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M \alpha_i I(f_i(x) = k), \sum \limits_i \alpha_i = 1, \alpha_i > 0</tex> | ||
− | == | + | == Теорема Кондорсе о присяжных == |
+ | |||
+ | {{Теорема | ||
+ | |statement= | ||
+ | Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри, и стремиться к единице. <br> | ||
+ | Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных. | ||
+ | }} | ||
Пусть <tex>M</tex> - количество присяжный, <tex>p</tex> - вероятность правильного решения одного эксперта, <tex>R</tex> - вероятность правильного решения всего жюри, | Пусть <tex>M</tex> - количество присяжный, <tex>p</tex> - вероятность правильного решения одного эксперта, <tex>R</tex> - вероятность правильного решения всего жюри, | ||
− | <tex>m</tex> - минимальное большинство членов жюри <tex> = | + | <tex>m</tex> - минимальное большинство членов жюри <tex> = \lfloor \frac N 2 \rfloor + 1 </tex> |
Тогда <tex> R = \sum \limits_{i = m}^M C_M^i p ^ i (1 - p) ^ {M - i} </tex> | Тогда <tex> R = \sum \limits_{i = m}^M C_M^i p ^ i (1 - p) ^ {M - i} </tex> |
Версия 10:44, 19 февраля 2019
Ансамбль
Рассмотрим задачу классификации на K классов:
Пусть имеется M классификатор ("экспертов"):
Тогда давайте посмотрим новый классификатор на основе данных:
Простое голосование:
Взвешенное голосование:
Теорема Кондорсе о присяжных
Теорема: |
Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри, и стремиться к единице. Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных. |
Пусть
- количество присяжный, - вероятность правильного решения одного эксперта, - вероятность правильного решения всего жюри, - минимальное большинство членов жюриТогда
Бутстрэп
Метод бутстрэпа (англ. bootstrap) — один из первых и самых простых видов ансамблей, который позволяет оценивать многие статистики сложных распределений и заключается в следующем. Пусть имеется выборка
Обозначим новую выборку через . Повторяя процедуру раз, сгенерируем подвыборок . Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения.
Бутстрэп используется в статистике, в том числе для:
- Аппроксимация стандартной ошибки выборочной оценки
- Байесовская коррекция с помощью Бутстрэп метода
- Доверительные интервалы
- Метод процентилей
Бэггинг
Пусть имеется выборка
размера . Количество классификаторовАлгоритм классификации в технологии бэггинг на подпространствах:
- Генерируется с помощью бутстрэпа M выборок размера N для каждого классификатора
- Производится независимое обучения каждого элементарного классификатора (каждого алгоритма, определенного на своем подпространстве).
- Производится классификация основной выборки на каждом из подпространств (также независимо).
- Принимается окончательное решение о принадлежности объекта одному из классов. Это можно сделать несколькими разными способами, подробнее описано ниже.
Окончательное решение о принадлежности объекта классу может приниматься, например, одним из следующих методов:
- Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу.
- Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов.
- Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для эксперты одна из групп параметров важна в большей степени, тогда прибегают к взвешиванию классификаторов. То есть при голосовании голос классификатора умножается на его вес.