Векторное представление слов — различия между версиями
Serejke (обсуждение | вклад) |
Serejke (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Векторное представление слов''' - общее название для различных подходов к моделированию языка и обучению представлений в обработке естественного языка, направленных на сопоставление словам | + | '''Векторное представление слов''' - общее название для различных подходов к моделированию языка и обучению представлений в обработке естественного языка, направленных на сопоставление словам из некоторого словаря векторов небольшой размерности. |
== One-hot encoding == | == One-hot encoding == | ||
Строка 10: | Строка 10: | ||
В word2vec существуют две основных модели обучения: Skip-gram и CBOW (Continuous Bag of Words). В модели Skip-gram по слову предсказываются слова из его контекста, а в модели CBOW по контексту подбирается наиболее вероятное слово. На выходном слое используется функция <math>softmax</math> или его вариация, чтобы получить на выходе распределение вероятности каждого слова. В обеих моделях входные и выходные слова подаются в one-hot encoding, благодаря чему при умножении на матрицу <math>W</math>, соединяющую входной и скрытый слои, происходит выбор одной строки <math>W</math>. Размерность <math>N</math> является гиперпараметром алгоритма, а обученная матрица <math>W</math> - выходом, так как ее строки содержат векторные представления слов. | В word2vec существуют две основных модели обучения: Skip-gram и CBOW (Continuous Bag of Words). В модели Skip-gram по слову предсказываются слова из его контекста, а в модели CBOW по контексту подбирается наиболее вероятное слово. На выходном слое используется функция <math>softmax</math> или его вариация, чтобы получить на выходе распределение вероятности каждого слова. В обеих моделях входные и выходные слова подаются в one-hot encoding, благодаря чему при умножении на матрицу <math>W</math>, соединяющую входной и скрытый слои, происходит выбор одной строки <math>W</math>. Размерность <math>N</math> является гиперпараметром алгоритма, а обученная матрица <math>W</math> - выходом, так как ее строки содержат векторные представления слов. | ||
+ | |||
+ | Для ускорения обучения моделей Skip-gram и CBOW используются модификации <math>softmax</math>, такие как иерархический <math>softmax</math>, <math>negative subsampling</math>, позволяющие вычислять распределение вероятностей быстрее, чем за линейное время от размера словаря. | ||
{|align="center" | {|align="center" | ||
|-valign="top" | |-valign="top" | ||
− | |[[Файл:skip-gram.png| | + | |[[Файл:skip-gram.png|350px|thumb|Схема сети для модели Skip-gram]] |
− | |[[Файл:cbow.png| | + | |[[Файл:cbow.png|350px|thumb|center|Схема сети для модели CBOW]] |
|} | |} | ||
Версия 13:20, 2 марта 2019
Векторное представление слов - общее название для различных подходов к моделированию языка и обучению представлений в обработке естественного языка, направленных на сопоставление словам из некоторого словаря векторов небольшой размерности.
One-hot encoding
Наиболее простой способ представления слов в виде векторов. Пусть число различных слов равно
. Сопоставим слову с номером вектор длины , в котором -тая координата равна единице, а все остальные - нулям. Недостатком one-hot encoding является то, что по векторным представлениям нельзя судить о схожести смысла слов. Также вектора имеют очень большой размер, из-за чего их неэффективно хранить в памяти.word2vec
word2vec - способ построения сжатого пространства векторов слов, использующий нейронные сети. Принимает на вход большой текстовый корпус и сопоставляет каждому слову вектор. Сначала он создает словарь, а затем вычисляет векторное представление слов. Векторное представление основывается на контекстной близости: слова, встречающиеся в тексте рядом с одинаковыми словами (а следовательно, имеющие схожий смысл), в векторном представлении будут иметь близкие координаты векторов-слов.
В word2vec существуют две основных модели обучения: Skip-gram и CBOW (Continuous Bag of Words). В модели Skip-gram по слову предсказываются слова из его контекста, а в модели CBOW по контексту подбирается наиболее вероятное слово. На выходном слое используется функция
или его вариация, чтобы получить на выходе распределение вероятности каждого слова. В обеих моделях входные и выходные слова подаются в one-hot encoding, благодаря чему при умножении на матрицу , соединяющую входной и скрытый слои, происходит выбор одной строки . Размерность является гиперпараметром алгоритма, а обученная матрица - выходом, так как ее строки содержат векторные представления слов.Для ускорения обучения моделей Skip-gram и CBOW используются модификации
, такие как иерархический , , позволяющие вычислять распределение вероятностей быстрее, чем за линейное время от размера словаря.
Полученные векторы-слова могут быть использованы для вычисления семантического расстояния между словами. После обучения векторы отражают различные грамматические и семантические концепции.
См. также
Примечания
Источники информации
- [1] — fastText by Facebook