Оценка качества в задачах классификации — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(ROC, картинка)
(F1)
Строка 50: Строка 50:
 
Таким образом число точек не превосходит число объектов, идеальный алгоритм проходит через точку (0;1), худший (например, монетка) — прямая TPR = FPR.
 
Таким образом число точек не превосходит число объектов, идеальный алгоритм проходит через точку (0;1), худший (например, монетка) — прямая TPR = FPR.
 
Для численной же оценки алгоритма по ROC кривой используется значение площади под ней ('''AUC''', area under curve). Таким образом идеальный алгоритм имеет AUC равный 1, а плохой — 0,5.
 
Для численной же оценки алгоритма по ROC кривой используется значение площади под ней ('''AUC''', area under curve). Таким образом идеальный алгоритм имеет AUC равный 1, а плохой — 0,5.
 +
= F₁ score =
 +
Для общей оценки качества классификатора часто используют F₁ меру — среднее гармоническое между precision и recall:
 +
: <tex>F_1 = (\dfrac{Prec^{-1} + Recall^{-1}}{2})^{-1} = 2 \cdot \dfrac{Prec \cdot Recall}{β^2 \cdot Prec + Recall}</tex>
 +
 +
F₁ мера так же может быть обобщена до F<sub>β</sub>:
 +
: <tex>F_β = (1 + β^2) \dfrac{Prec \cdot Recall}{β^2 \cdot Prec + Recall}</tex>
 +
 +
F<sub>β</sub> измеряет эффективность классификатора учитывая recall в β раз более важным чем precision.

Версия 01:34, 11 апреля 2019

Общие понятия

  • TP — true positive, классификатор верно отнёс объект к рассматриваемому классу.
  • TN — true negative, классификатор верно утверждает, что объект не принадлежит к рассматриваемому классу.
  • FP — false positive, классификатор неверно отнёс объект к рассматриваемому классу.
  • FN — false negative, классификатор неверно утверждает, что объект не принадлежит к рассматриваемому классу.

Confusion matrix (матрица несоответствий) наглядно показывает суть этих показателей:

Принадлежит классу (P) Не принадлежит классу (N)
Предсказана принадлежность классу TP FP
Предсказано отсутствие принадлежности к классу FN TN

Простые оценки

  • Accuracy (точность), показывает долю правильных классификаций. Несмотря на очевидность и простоту является одной из самых малоинформативных оценок классификаторов.
[math]Acc = \dfrac{TP + TN}{TP + TN + FP + FN}[/math]
  • Recall (полнота), так же sensitivity и TPR (true positive rate), показывает долю найденных объектов класса к общему числу объектов класса. Иначе говоря то, насколько хорошо наш классификатор находит объекты из класса.
[math]Recall = \dfrac{TP}{TP + FN}[/math]
  • Precision (да, тоже точность), показывает долю объектов класса среди объектов выделенных классификатором.
[math]Prec = \dfrac{TP}{TP + FP}[/math]
  • Specificity, показывает долю верных срабатываний классификатора к общему числу объектов за пределами класса. Иначе говоря то, насколько часто классификатор правильно не относит объекты к классу.
[math]Spc = \dfrac{TN}{FP + TN}[/math]
  • Fall-out, так же FPR (false positive rate), показывает долю неверных срабатываний классификатора к общему числу объектов за пределами класса. Иначе говоря то, насколько часто классификатор ошибается при отнесении того или иного объекта к классу.
[math]FPR = \dfrac{FP}{FP + TN}[/math]

ROC кривая

ROC кривая; оранжевым показан идеальный алгоритм, фиолетовым — типичный, а синим — худший

Для наглядной оценки качества алгоритма применяется ROC кривая. Кривая строится на плоскости, определённой осями полноты (recall, TPR) по вертикали и частоты ложных срабатываний (FPR, 1-Spc).

Чтобы построить кривую:

  1. Запустить классификатор на тестовой выборке
  2. Отсортировать результаты по уверенности классификатора в принадлежности объекта к классу
  3. Пока не кончились элементы:
    1. Взять объект с максимальной уверенностью
    2. Сравнить метку с реальной
    3. Пересчитать TPR и FPR на взятых объектах
    4. Поставить точку, если обе характеристики не NaN / ±∞
  4. Построить кривую по точкам

Таким образом число точек не превосходит число объектов, идеальный алгоритм проходит через точку (0;1), худший (например, монетка) — прямая TPR = FPR. Для численной же оценки алгоритма по ROC кривой используется значение площади под ней (AUC, area under curve). Таким образом идеальный алгоритм имеет AUC равный 1, а плохой — 0,5.

F₁ score

Для общей оценки качества классификатора часто используют F₁ меру — среднее гармоническое между precision и recall:

[math]F_1 = (\dfrac{Prec^{-1} + Recall^{-1}}{2})^{-1} = 2 \cdot \dfrac{Prec \cdot Recall}{β^2 \cdot Prec + Recall}[/math]

F₁ мера так же может быть обобщена до Fβ:

[math]F_β = (1 + β^2) \dfrac{Prec \cdot Recall}{β^2 \cdot Prec + Recall}[/math]

Fβ измеряет эффективность классификатора учитывая recall в β раз более важным чем precision.