Случайные графы — различия между версиями
м (→Графы имеющие диаметр два) |
(Issues) |
||
Строка 14: | Строка 14: | ||
|definition= Свойство <tex>A</tex> '''ассимптотически почти наверное ложно''', если <tex>\lim\limits_{n \rightarrow \infty} p(n) = 0</tex> | |definition= Свойство <tex>A</tex> '''ассимптотически почти наверное ложно''', если <tex>\lim\limits_{n \rightarrow \infty} p(n) = 0</tex> | ||
}} | }} | ||
+ | '''''Здесь стоит написать, что такое n и p(n).''''' | ||
== Существование треугольников в случайном графе == | == Существование треугольников в случайном графе == | ||
{{Теорема | {{Теорема | ||
− | |statement=Если <tex>p(n) = o(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> а.п.н не содержит треугольников. | + | |statement=Если <tex>p(n) = o(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> а.п.н не содержит треугольников. '''''Лучше не сокращать а.п.н, я думаю, или в скобочках разок написать, что это''''' |
|proof= | |proof= | ||
Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник. | Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник. | ||
Строка 23: | Строка 24: | ||
Воспользуемся [[Неравенство Маркова| неравенством Маркова]]: | Воспользуемся [[Неравенство Маркова| неравенством Маркова]]: | ||
− | <tex>P(T > 0) = P(T \geqslant 1) \leqslant | + | <tex>P(T > 0) = P(T \geqslant 1) \leqslant E[T] = \sum\limits_{i, j, k}T_{i, j, k}p^3 = C^3_np^3 \sim \dfrac{n^3}{6}p^3 \rightarrow 0</tex>, при <tex>n \rightarrow \infty</tex>. |
}} | }} | ||
+ | |||
+ | '''''Добавил скобки вокруг E[T], оформи так же, а то слабо читается. С дисперсией тоже лучше добавить. Деление на 6 должно появиться под суммой сразу''''' | ||
{{Теорема | {{Теорема | ||
|statement=Если <tex>p(n) = \omega(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> а.п.н содержит треугольник. | |statement=Если <tex>p(n) = \omega(\dfrac{1}{n})</tex>, то <tex>G(n, p)</tex> а.п.н содержит треугольник. | ||
+ | |||
|proof= | |proof= | ||
Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник. | Пусть <tex>T</tex> {{---}} число треугольников в графе, <tex>T_{i,j,k}</tex> {{---}} индикаторная случайная величина, равная <tex>1</tex>, если вершины <tex>i</tex>, <tex>j</tex> и <tex>k</tex> образуют треугольник. | ||
Строка 53: | Строка 57: | ||
|statement=Если <tex>c \geqslant 3</tex>, <tex>n \geqslant 100</tex>, <tex>p = \dfrac{c\ln n}{n}</tex>. Тогда <tex>P(G - связен) \rightarrow 1</tex>. | |statement=Если <tex>c \geqslant 3</tex>, <tex>n \geqslant 100</tex>, <tex>p = \dfrac{c\ln n}{n}</tex>. Тогда <tex>P(G - связен) \rightarrow 1</tex>. | ||
|proof= | |proof= | ||
− | Пусть <tex>X</tex> {{---}} индикаторная величина, равная | + | Пусть <tex>X</tex> {{---}} индикаторная величина, равная нулю, если <tex>G</tex> связен, и <tex>k</tex>, если <tex>G</tex> содержит <tex>k</tex> компонент связности. |
<tex>X_i</tex> {{---}} число компонент связности размера <tex>i</tex>. | <tex>X_i</tex> {{---}} число компонент связности размера <tex>i</tex>. | ||
Строка 111: | Строка 115: | ||
{{Теорема | {{Теорема | ||
|statement=Пусть рассматривается свойство графа иметь диаметр два. Тогда <tex>p = \sqrt{2} \sqrt{\dfrac{\ln n}{n}}</tex> {{---}} порог. | |statement=Пусть рассматривается свойство графа иметь диаметр два. Тогда <tex>p = \sqrt{2} \sqrt{\dfrac{\ln n}{n}}</tex> {{---}} порог. | ||
+ | '''''что такое порог?''''' | ||
|proof= | |proof= | ||
− | Назовем вершины <tex>u</tex> и <tex>v</tex> плохой парой, если <tex>dist(u, v) > 2</tex>. <tex>B_{i, j}</tex> {{---}} индикаторная величина, равная <tex>1</tex>, если <tex>i</tex> и <tex>j</tex> | + | Назовем вершины <tex>u</tex> и <tex>v</tex> плохой парой, если <tex>dist(u, v) > 2</tex> '''''мб лучше написать про расстояние явно, но думаю, всем будет понятно'''''. <tex>B_{i, j}</tex> {{---}} индикаторная величина, равная <tex>1</tex>, если <tex>i</tex> и <tex>j</tex> являются плохой парой. |
<tex>N_z = \sum\limits_{i, j} B_{i,j}</tex> | <tex>N_z = \sum\limits_{i, j} B_{i,j}</tex> | ||
<tex>P(B_{i, j}) = (1 - p)(1 - p^2)^{n - 2}</tex> | <tex>P(B_{i, j}) = (1 - p)(1 - p^2)^{n - 2}</tex> | ||
− | Сначала докажем, что при <tex>c > sqrt{2}</tex>, граф а.п.н не имеет диаметр | + | Сначала докажем, что при <tex>c > sqrt{2}</tex>, граф а.п.н не имеет диаметр, равный двум. Для этого оценим матожидание <tex>N_z</tex>. |
<tex>EN_z = C_n^2(1 - p)(1 - p^2)^{n - 2} \approx \dfrac{n^2}{2}(1 - c\sqrt{\dfrac{\ln n}{n}})(1 - \dfrac{c^2\ln n}{n})^{n - 2} \leqslant \dfrac{n^2}{2}e^{-c^2\ln n} = \dfrac{n^{2 - c^2}}{2}</tex> | <tex>EN_z = C_n^2(1 - p)(1 - p^2)^{n - 2} \approx \dfrac{n^2}{2}(1 - c\sqrt{\dfrac{\ln n}{n}})(1 - \dfrac{c^2\ln n}{n})^{n - 2} \leqslant \dfrac{n^2}{2}e^{-c^2\ln n} = \dfrac{n^{2 - c^2}}{2}</tex> | ||
− | При <tex>c > \sqrt{2}</tex> последнее выражение стремится к <tex>0</tex>, по [[#th1 | | + | При <tex>c > \sqrt{2}</tex> последнее выражение стремится к <tex>0</tex>, по [[#th1 | вышедоказанному ]] граф а.п.н. не имеет диаметр, равный двум. |
Рассмотрим <tex>c < \sqrt{2}</tex>: | Рассмотрим <tex>c < \sqrt{2}</tex>: | ||
Строка 135: | Строка 140: | ||
<tex>\sum EB_{i,j}B_{i,l} \leqslant n^{3 - 2c}</tex> | <tex>\sum EB_{i,j}B_{i,l} \leqslant n^{3 - 2c}</tex> | ||
− | В итоге: <tex>EN_z^2 \leqslant n^{2 - c^2} + n^{4 - 2c^2} + n^{3 - 2c^2}</tex>. Из этого следует, что <tex>EN_z \leqslant (EN_z)^2(1 + o(1))</tex>, а значит граф а.п.н имеет диаметр | + | В итоге: <tex>EN_z^2 \leqslant n^{2 - c^2} + n^{4 - 2c^2} + n^{3 - 2c^2}</tex>. Из этого следует, что <tex>EN_z \leqslant (EN_z)^2(1 + o(1))</tex>, а значит граф а.п.н имеет диаметр, равный двум при <tex>c > \sqrt{2}</tex>. |
}} | }} | ||
Версия 15:55, 4 декабря 2019
Определение:
Биномиальная модель случайного графа (англ. binomial random graph model) вероятностное пространство . , , где — число ребер в графе.
— модель, в которой каждое ребро входит в случайный граф независимо от остальных ребер с вероятностью . —
Определение:
Равномерная модель случайного графа (англ. uniform random graph model)
— модель, в которой все графы с ребрами равновероятны. — вероятностное пространство. , .
Определение: |
Свойство | ассимптотически почти наверное истинно, если
Определение: |
Свойство | ассимптотически почти наверное ложно, если
Здесь стоит написать, что такое n и p(n).
Содержание
Существование треугольников в случайном графе
Теорема: |
Если , то а.п.н не содержит треугольников. Лучше не сокращать а.п.н, я думаю, или в скобочках разок написать, что это |
Доказательство: |
Пусть — число треугольников в графе, — индикаторная случайная величина, равная , если вершины , и образуют треугольник.Воспользуемся неравенством Маркова: , при . |
Добавил скобки вокруг E[T], оформи так же, а то слабо читается. С дисперсией тоже лучше добавить. Деление на 6 должно появиться под суммой сразу
Теорема: |
Если , то а.п.н содержит треугольник. |
Доказательство: |
Пусть — число треугольников в графе, — индикаторная случайная величина, равная , если вершины , и образуют треугольник.Воспользуемся неравенством Чебышева: . Найдем :
, при |
Связность графа
Лемма: |
Если , , . Тогда . |
Доказательство: |
Пусть — индикаторная величина, равная нулю, если связен, и , если содержит компонент связности.— число компонент связности размера . , если — компонента связности.
.
Последняя сумма симметрична (слагаемые при и равны), кроме того слагаемое при — наибольшее (для доказательства достаточно рассмотреть отношения слагаемых при и ).Оценим сверху первое слагаемое :
, поэтому . , при |
Лемма: |
Если , , . Тогда . |
Теорема: |
, тогда при граф а.п.н связен, при граф а.п.н не связен. |
Теоремы о связи вероятности и матожидания
Теорема: |
Пусть — число объектов в графе . — свойство. Тогда, если , при , то а.п.н ложно. |
Доказательство: |
Воспользуемся неравенством Маркова: , при . |
Теорема: |
Пусть — число объектов в графе . — свойство. Тогда, если , при , и то а.п.н истинно. |
Доказательство: |
Воспользуемся неравенством Чебышева: , при . |
Графы имеющие диаметр два
Теорема: |
Пусть рассматривается свойство графа иметь диаметр два. Тогда — порог.
что такое порог? |
Доказательство: |
Назовем вершины и плохой парой, если мб лучше написать про расстояние явно, но думаю, всем будет понятно. — индикаторная величина, равная , если и являются плохой парой.Сначала докажем, что при , граф а.п.н не имеет диаметр, равный двум. Для этого оценим матожидание .При вышедоказанному граф а.п.н. не имеет диаметр, равный двум. последнее выражение стремится к , поРассмотрим :
Рассмотрим сумму :Если , , и различны, то .
В итоге: . Из этого следует, что , а значит граф а.п.н имеет диаметр, равный двум при . |
См. также
- Дискретная случайная величина
- Дисперсия случайной величины
- Математическое ожидание случайной величины
Источники информации
- Coursera — Онлайн-курс
- Wikipedia — Random graphs
- Avrim Blum, John Hopcroft, and Ravindran Kannan. «Foundations of Data Science» — «Cambridge University Press», 2013 г. — 245-260 стр. — ISBN 978-1108485067