Машинное обучение — различия между версиями
(→Порождающие модели: добавил ссылку) |
|||
Строка 71: | Строка 71: | ||
*[[Обучение с подкреплением]]<tex>^\star</tex> | *[[Обучение с подкреплением]]<tex>^\star</tex> | ||
*[[Методы policy gradient и алгоритм асинхронного актора-критика]]<tex>^\star</tex> | *[[Методы policy gradient и алгоритм асинхронного актора-критика]]<tex>^\star</tex> | ||
+ | |||
+ | =Активное обучение= | ||
+ | *[[Активное обучение]]<tex>^\star</tex> | ||
=Примеры кода= | =Примеры кода= | ||
Строка 85: | Строка 88: | ||
*[[Рекомендательные системы]] | *[[Рекомендательные системы]] | ||
*[[Настройка гиперпараметров]] | *[[Настройка гиперпараметров]] | ||
− | |||
*[[Примеры кода на R]]<tex>^\star</tex> | *[[Примеры кода на R]]<tex>^\star</tex> | ||
*[[Порождающие модели]] | *[[Порождающие модели]] |
Версия 14:29, 6 февраля 2020
Содержание
Общие понятия
- Общие понятия
- Модель алгоритма и ее выбор
- Переобучение
- Кросс-валидация
- Выброс
- Ранжирование
- Стохастический градиентный спуск
- Регуляризация
- Известные наборы данных
- Обучение с частичным привлечением учителя
Классификация и регрессия
- Метрический классификатор и метод ближайших соседей
- Дерево решений и случайный лес
- Вариации регрессии
- Линейная регрессия
- Логистическая регрессия
- Метод опорных векторов (SVM)
- Байесовская классификация
- Байесовские сети
- Поиск ближайших соседей с помощью иерархического маленького мира
Кластеризация
- Кластеризация
- Иерархическая кластеризация
- Оценка качества в задаче кластеризации
- Эволюционные алгоритмы кластеризации
Ансамбли
Нейронные сети
Глубокое обучение
- Глубокое обучение
- Настройка глубокой сети
- Batch-normalization
- Рекуррентные нейронные сети
- Долгая краткосрочная память
- Сегментация изображений
Сверточные сети
Порождающие модели
Обработка естественного языка
- Распознавание речи
- Обработка естественного языка
- Векторное представление слов
- Классификация текстов и анализ тональности