Порождающие модели — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Вычисление распределения)
Строка 13: Строка 13:
  
 
== Вычисление распределения ==
 
== Вычисление распределения ==
[[Файл:Tax2.png|500px|thumb|right]]
+
[[Файл:Tax2.jpg|500px|thumb|right]]
 
Оценка плотности распределения является основной задачей порождающих моделей.
 
Оценка плотности распределения является основной задачей порождающих моделей.
  

Версия 10:35, 16 февраля 2020

Порождающая модель пытается генерировать рукописные 0 и 1, для этого моделирует распределение по всему пространству данных. Напротив, дискриминативная модель старается разделить данные, без необходимости точно моделировать, как объекты размещаются по обе стороны от линии.

Порождающие модели (англ. generative model) — это класс моделей совместного распределения вероятностей [math]p(x, y)[/math] для генерации новых объектов на основе исходных данных.

Порождающая модель может генерировать новые фотографии животных, которые выглядят как настоящие животные, в то время как дискриминативная модель (англ. discriminative model)[1] может отличить собаку от кошки.

Классификация задачи

Можно использовать некоторые эмпирические правила для генерации новых объектов, не используя машинного обучения.

Требуется чтобы новые объекты были правдоподобными в своей области. Новое изображение человека должно быть правдоподобным, как изображение, но также человек на нём должен быть правдоподобным как человек.

Мы хотим научиться создавать правдоподобный объект относительно некоторой скрытой структуры исходных объектов. Давайте изучим распределение по ним, а затем просто будем сэмплировать новый объект из этого распределения. Значит эта задача относится к классу задач обучения без учителя.

Вычисление распределения

Tax2.jpg

Оценка плотности распределения является основной задачей порождающих моделей.

Два основных подхода:

  • Явный: определить распределение [math]p_{model}[/math], описывающее объекты и генерировать данные из него
  • Неявный: получить некоторое распределение, оценить его близость с [math]p_{model}[/math] через дивергенцию Кульбака-Лейблера[2]

Глубокие порождающие модели на основе нейронных сетей

См. также

Примечания

Источники информации