Порождающие модели — различия между версиями
PaulKh (обсуждение | вклад) м |
PaulKh (обсуждение | вклад) (→Вычисление распределения) |
||
Строка 12: | Строка 12: | ||
Мы хотим научиться создавать правдоподобный объект относительно некоторой скрытой структуры исходных объектов. Давайте изучим распределение по ним, а затем просто будем сэмплировать новый объект из этого распределения. Значит эта задача относится к классу задач [[Общие понятия#Обучение без учителя (англ. Unsupervised learning)|обучения без учителя]]. | Мы хотим научиться создавать правдоподобный объект относительно некоторой скрытой структуры исходных объектов. Давайте изучим распределение по ним, а затем просто будем сэмплировать новый объект из этого распределения. Значит эта задача относится к классу задач [[Общие понятия#Обучение без учителя (англ. Unsupervised learning)|обучения без учителя]]. | ||
− | == Вычисление распределения == | + | == Вычисление плотности распределения == |
[[Файл:Tax2.jpg|500px|thumb|right]] | [[Файл:Tax2.jpg|500px|thumb|right]] | ||
+ | С математической точки зрения основная цель порождающей модели обычно состоит в максимизации функции правдоподобия: для набора данных | ||
Оценка плотности распределения является основной задачей порождающих моделей. | Оценка плотности распределения является основной задачей порождающих моделей. | ||
Версия 21:17, 16 февраля 2020
Порождающие модели (англ. generative model) — это класс моделей, которые обучают совместное распределение[1] данных ; отсюда легко получить условное распределение , но совместное даёт больше информации и его можно использовать, например, для генерации новых фотографий животных, которые выглядят как настоящие животные.
С другой стороны, дискриминативная модель (англ. discriminative model)[2] обучает только условное распределение и может, например, отличить собаку от кошки.
Содержание
Классификация задачи
Можно использовать некоторые эмпирические правила для генерации новых объектов, не используя машинного обучения.
Требуется чтобы новые объекты были правдоподобными в своей области. Новое изображение человека должно быть правдоподобным, как изображение, но также человек на нём должен быть правдоподобным как человек.
Мы хотим научиться создавать правдоподобный объект относительно некоторой скрытой структуры исходных объектов. Давайте изучим распределение по ним, а затем просто будем сэмплировать новый объект из этого распределения. Значит эта задача относится к классу задач обучения без учителя.
Вычисление плотности распределения
С математической точки зрения основная цель порождающей модели обычно состоит в максимизации функции правдоподобия: для набора данных Оценка плотности распределения является основной задачей порождающих моделей.
Два основных подхода:
- Явный: определить распределение , описывающее объекты и генерировать данные из него
- Неявный: получить некоторое распределение, оценить его близость с [3] через дивергенцию Кульбака-Лейблера