Графовые нейронные сети — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Фундамент страницы)
 
(Графовые нейронные сети: Проверка 1)
Строка 1: Строка 1:
  
== Графовые нейронные сети  ==
+
'''Графовая нейронная сеть''' (англ. Graph Neural Network, GNN) – тип нейронной сети, которая напрямую работает со структурой графа. Типичным применением GNN является классификация узлов.  
 
+
== Описание ==
'''Определение:''' Графовая нейронная сеть (Graph Neural Network, GNN) – тип нейронной сети, которая напрямую работает со структурой графа. Типичным применением GNN является классификация узлов.  
+
При работе с естественными языками, обработке и анализе изображений, построении моделей веб-сетей и еще широком спектре прикладных задач, бывает удобно представлять данные в виде графов. Однако для традиционных методов машинного обучения необходимо предварительно преобразовывать графово структурированные данные в другие структуры данных, к примеру числовой вектор. Такой подход может привести к потере части информации, заключающейся во взаиморасположении узлов сети.
'''Описание:''' При работе с естественными языками, обработке и анализе изображений, построении моделей веб-сетей и еще широком спектре прикладных задач, бывает удобно представлять данные в виде графов. Однако для традиционных методов машинного обучения необходимо предварительно преобразовывать графово структурированные данные в другие структуры данных, к примеру числовой вектор. Такой подход может привести к потере части информации, заключающейся во взаиморасположении узлов сети.
 

Версия 21:28, 17 марта 2020

Графовая нейронная сеть (англ. Graph Neural Network, GNN) – тип нейронной сети, которая напрямую работает со структурой графа. Типичным применением GNN является классификация узлов.

Описание

При работе с естественными языками, обработке и анализе изображений, построении моделей веб-сетей и еще широком спектре прикладных задач, бывает удобно представлять данные в виде графов. Однако для традиционных методов машинного обучения необходимо предварительно преобразовывать графово структурированные данные в другие структуры данных, к примеру числовой вектор. Такой подход может привести к потере части информации, заключающейся во взаиморасположении узлов сети.