PixelRNN и PixelCNN — различия между версиями
Tklochkov (обсуждение | вклад) (→Идея) |
Tklochkov (обсуждение | вклад) (Обновление описания) |
||
Строка 1: | Строка 1: | ||
[[File:pixel-1.png|450px|thumb|Пример использования PixelRNN/PixelCNN сетей]] | [[File:pixel-1.png|450px|thumb|Пример использования PixelRNN/PixelCNN сетей]] | ||
− | '''PixelRNN/PixelCNN''' - алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией DeepMind и являются предшественниками алгоритма WaveNet, который используется в голосовом помощнике Google. | + | '''PixelRNN/PixelCNN''' - алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией DeepMind и являются предшественниками алгоритма WaveNet, который используется в голосовом помощнике Google. |
+ | |||
+ | Основным преимуществом PixelRNN/PixelCNN является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений. | ||
== Идея == | == Идея == | ||
Пусть дано черно-белое изображение <tex>X</tex> размером <tex>N\times N</tex>. Построчно преобразуем картинку в вектор <tex>V_X = \{x_1, x_2, \dots, x_{N^2} \}</tex>, соединяя конец текущей строки с началом следующей. В таком представлении изображения можно предположить, что значение любого пикселя <tex>x_i\in V_X</tex> может зависеть от значений предыдущих пикселей <tex>x_j, j = 1,2,\dots i-1</tex>. | Пусть дано черно-белое изображение <tex>X</tex> размером <tex>N\times N</tex>. Построчно преобразуем картинку в вектор <tex>V_X = \{x_1, x_2, \dots, x_{N^2} \}</tex>, соединяя конец текущей строки с началом следующей. В таком представлении изображения можно предположить, что значение любого пикселя <tex>x_i\in V_X</tex> может зависеть от значений предыдущих пикселей <tex>x_j, j = 1,2,\dots i-1</tex>. |
Версия 20:48, 22 марта 2020
PixelRNN/PixelCNN - алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией DeepMind и являются предшественниками алгоритма WaveNet, который используется в голосовом помощнике Google.
Основным преимуществом PixelRNN/PixelCNN является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений.
Содержание
Идея
Пусть дано черно-белое изображение
размером . Построчно преобразуем картинку в вектор , соединяя конец текущей строки с началом следующей. В таком представлении изображения можно предположить, что значение любого пикселя может зависеть от значений предыдущих пикселей .Тогда значение пикселя
можно выразить через условную вероятность , и, используя цепное правило для вероятностей, оценка совместного распределения всех пикселей будет записываться в следующем виде: .Задача алгоритма - восстановить данное распределение. Учитывая тот факт, что любой пиксель принимает значение
, необходимо восстановить лишь дискретное распределение.