Карлукова M32342 временная статья — различия между версиями
Строка 28: | Строка 28: | ||
<tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \ldots + \\ + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1} + (a_k - \sum\limits_{i = 1}^k c_i \cdot a_{k - i}) \cdot t^k + \ldots + (a_n - \sum\limits_{i = 1}^n c_i \cdot a_{n - i}) \cdot t^n + \ldots</tex>. | <tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \ldots + \\ + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1} + (a_k - \sum\limits_{i = 1}^k c_i \cdot a_{k - i}) \cdot t^k + \ldots + (a_n - \sum\limits_{i = 1}^n c_i \cdot a_{n - i}) \cdot t^n + \ldots</tex>. | ||
− | Для <tex> | + | Для всех <tex>n \geqslant k</tex> последовательность <tex> a_0, a_1, \ldots, a_n, \ldots </tex> линейным образом определяется через <tex>k</tex> предыдущих членов, поэтому в правой части все коэффициенты при степенях, начиная с <tex>k</tex>, обнулятся, а равенство будет выглядеть так: |
<tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \ldots + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1}</tex>. | <tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \ldots + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1}</tex>. | ||
Строка 40: | Строка 40: | ||
Перепишем первое равенство, выразив <tex>P(t)</tex> через <tex>A(t)</tex> и <tex>Q(t)</tex>: <tex>P(t) = A(t) \cdot Q(t)</tex>. | Перепишем первое равенство, выразив <tex>P(t)</tex> через <tex>A(t)</tex> и <tex>Q(t)</tex>: <tex>P(t) = A(t) \cdot Q(t)</tex>. | ||
− | Так как <tex>deg(P) < k</tex>, выполнено <tex>p_n = 0</tex> для <tex> | + | Так как <tex>deg(P) < k</tex>, выполнено <tex>p_n = 0</tex> для любого <tex>n \geqslant k </tex>. Расписывая <tex>p_n</tex> по определению [[Арифметические действия с формальными степенными рядами#def_mul|произведения степенных рядов]], получаем <tex>p_n = \sum\limits_{i = 0}^n a_{n-i} \cdot q_{i} = 0</tex> |
Разобьём полученную сумму на две: <tex>p_n = \sum\limits_{i = 0}^{k} a_{n-i}\cdot q_{i} + \sum\limits_{i = k+1}^n a_{n-i}\cdot q_{i}</tex>. Вторая компонента равна нулю, поскольку <tex>deg(Q) = k</tex>. Тогда <tex>p_n = \sum\limits_{i = 0}^k a_{n-i} \cdot q_{i} = 0</tex>. | Разобьём полученную сумму на две: <tex>p_n = \sum\limits_{i = 0}^{k} a_{n-i}\cdot q_{i} + \sum\limits_{i = k+1}^n a_{n-i}\cdot q_{i}</tex>. Вторая компонента равна нулю, поскольку <tex>deg(Q) = k</tex>. Тогда <tex>p_n = \sum\limits_{i = 0}^k a_{n-i} \cdot q_{i} = 0</tex>. |
Версия 18:35, 22 мая 2020
Примечание: в редактируемой статье указано, что достаточно рассматривать . :)
Теорема о связи этих понятий
Теорема: |
Последовательность является линейной рекуррентной последовательностью с первыми заданными членами её производящая функция является дробно-рациональной, причём представимой в виде , , |
Доказательство: |
Пусть — коэффициенты, задающие последовательность .Напишем друг под другом несколько производящих функций и соответствующих им формальных степенных рядов:
Сложим все равенства и получим . Для всех последовательность линейным образом определяется через предыдущих членов, поэтому в правой части все коэффициенты при степенях, начиная с , обнулятся, а равенство будет выглядеть так:. Заметим, что второй множитель в левой части имеет степень , а степень правой части не превосходит . Значит, многочлены и всегда могут быть найдены. Более того, многочлен в знаменателе после нашего построения всегда принимает вид .
Пусть , , .Перепишем первое равенство, выразив через и : .Так как произведения степенных рядов, получаем , выполнено для любого . Расписывая по определениюРазобьём полученную сумму на две: . Вторая компонента равна нулю, поскольку . Тогда .Развернём выражение для :. Перенесём все слагаемые, кроме , вправо:Видим, что . — коэффициент линейной рекуррентной последовательности, где роли играют при каждом , причём это выполнено для всех , так как индекс , удовлетворяющий данному условию, выбирался произвольно. |