Карлукова M32342 временная статья — различия между версиями
(→Примеры) |
(→Примеры) |
||
Строка 83: | Строка 83: | ||
Таким образом, <tex>F(t) = \dfrac{1}{1 - t - t^2}</tex>. | Таким образом, <tex>F(t) = \dfrac{1}{1 - t - t^2}</tex>. | ||
− | + | === Вычисление коэффициентов ряда <tex>\dfrac{1}{(1-t)^2}</tex> с помощью теоремы о связи рекуррентности и рациональности === | |
+ | Известно, что <tex>\dfrac{1}{(1-t)^2} = \sum\limits_0^{\infty}</tex> | ||
+ | |||
+ | <!-------------- | ||
* Вычислим производящую функцию последовательности <tex>a_0 = 1, a_n = k \cdot a_{n - 1}</tex> | * Вычислим производящую функцию последовательности <tex>a_0 = 1, a_n = k \cdot a_{n - 1}</tex> | ||
*: Так как последовательность является линейно рекуррентной, её производящая функция, согласно теореме, имеет вид <tex>F(t) = \dfrac{P(t)}{Q(t)}</tex>, где <tex>Q(t) = 1 - k \cdot t</tex> (так как <tex>c_1 = k</tex>), а <tex>deg(P) < 1</tex>. | *: Так как последовательность является линейно рекуррентной, её производящая функция, согласно теореме, имеет вид <tex>F(t) = \dfrac{P(t)}{Q(t)}</tex>, где <tex>Q(t) = 1 - k \cdot t</tex> (так как <tex>c_1 = k</tex>), а <tex>deg(P) < 1</tex>. |
Версия 02:25, 1 июня 2020
Примечание: в редактируемой статье указано, что достаточно рассматривать . :)
Содержание
Теорема о связи этих понятий
Теорема: |
Последовательность является линейной рекуррентной последовательностью с первыми заданными членами, определяемыми коэффициентами её производящая функция является дробно-рациональной, причём представимой в виде , где , . |
Доказательство: |
Пусть — коэффициенты, задающие линейную рекуррентную последовательность , то есть первые членов заданы, а для следующих справедливо соотношение .Напишем друг под другом несколько производящих функций и соответствующих им формальных степенных рядов: Сложим все равенства и получим Для всех выполняется равенство , поэтому в правой части все коэффициенты при степенях, начиная с , обнулятся, а равенство будет выглядеть следующим образом:
Заметим, что второй множитель в левой части равен в точности , а степень правой части не превосходит . Получили требуемое построение.Замечание. Многочлен можно найти по формуле как числитель получившейся дроби. К результату можно применить взятие его по модулю . Это действие не испортит многочлен, так как его степень строго меньше . При этом мы сократим число операций при вычислении , поскольку достаточно найти только первых членов результирующего ряда, а для этого можно обойтись только первыми слагаемыми степенных рядов, соответствующих производящей функции и столькими же для .Итак, .
Пусть , , .Перепишем первое равенство, выразив через и : .Так как произведения степенных рядов, получаем . , выполнено для любого . Расписывая по определениюРазобьём полученную сумму на две: . Так как известно, можем определить, чему равны эти суммы. Для первой выполняются равенства:
Вторая же компонента равна нулю, поскольку . Тогда .Развернём выражение для :
Перенесём все слагаемые, кроме , вправо:
|
Примеры
Представление в виде отношения многочленов производящей функции для последовательности чисел Фибоначчи
Введём обозначения:
- — производящая функция для чисел Фибоначчи,
- .
Последовательность задаётся следующим образом:
- ,
- .
Здесь
и , следовательно .К числителю применим формулу
. Чтобы получить ответ, требуется всего лишь найти и .- ,
- .
Таким образом,
.Вычисление коэффициентов ряда с помощью теоремы о связи рекуррентности и рациональности
Известно, что