Теорема Хаусдорфа об ε-сетях — различия между версиями
Rybak (обсуждение | вклад) (→Теорема Хаусдорфа) |
Shersh (обсуждение | вклад) м (→Теорема Хаусдорфа) |
||
Строка 39: | Строка 39: | ||
Тогда найдётся <tex>x_3:\ \rho(x_3, x_j) \ge \varepsilon_0, j = \overline{1, 2}</tex>. Если бы такого <tex>x_3</tex> не было, то у <tex>K</tex> была бы <tex>\varepsilon_0</tex>-сеть <tex>\{x_1, x_2\}</tex>. | Тогда найдётся <tex>x_3:\ \rho(x_3, x_j) \ge \varepsilon_0, j = \overline{1, 2}</tex>. Если бы такого <tex>x_3</tex> не было, то у <tex>K</tex> была бы <tex>\varepsilon_0</tex>-сеть <tex>\{x_1, x_2\}</tex>. | ||
− | И так далее. Получаем набор точек <tex>x_1, x_2, \ldots</tex>, <tex>\forall i \ne j: \ \rho(x_i, x_j) | + | И так далее. Получаем набор точек <tex>x_1, x_2, \ldots</tex>, <tex>\forall i \ne j: \ \rho(x_i, x_j) \geqslant \varepsilon_0</tex>. |
Так как <tex>K</tex> {{---}} компакт, то из этой последовательности можно выделить сходящуюся. Но по построению последовательности это невозможно, получили противоречие. | Так как <tex>K</tex> {{---}} компакт, то из этой последовательности можно выделить сходящуюся. Но по построению последовательности это невозможно, получили противоречие. |
Версия 15:28, 25 января 2014
Некоторые определения
Пусть
— метрическое пространство. Тогда принимая критерий Коши существования предела числовой последовательности за аксиому, приходим к понятию полного метрического пространства:Например, в связи с критерием Коши,
— полное метрическое пространство.
Определение: |
Пусть | , . Тогда — -сеть для , если .
Особый интерес представляют конечные -сети.
Определение: |
— вполне ограничено в , если конечная -сеть. |
Теорема Хаусдорфа
Теорема (Хаусдорф): |
Пусть — полное метрическое пространство, , — замкнуто.
Тогда — компакт — вполне ограниченно. |
Доказательство: |
Пусть — компакт.Предположим, что — не вполне ограниченно.Тогда . Если такого нет, то имеет -сеть .Тогда найдётся . Если бы такого не было, то у была бы -сеть .И так далее. Получаем набор точек , .Так как — компакт, то из этой последовательности можно выделить сходящуюся. Но по построению последовательности это невозможно, получили противоречие.
— замкнутое и вполне ограниченно. Рассмотрим любую последовательность в . Докажем, что из неё можно выделить сходящуюся подпоследовательность.Так как множество вполне ограничено, то оно будет содержаться в конечном объединении шаров радиуса .Рассмотрим последовательность . Она сходится к нулю.Так как — вполне ограниченна, то можно найти точки — -сеть для .
Шаров конечное число. Значит, среди них есть тот, который содержит бесконечное число элементов последовательности. бесконечно много элементов из . Обозначим как . Пусть — замкнутое и вполне ограниченно. Покроем его конечной системой шаров радиуса . Среди них выберем тот, в котором бесконечно много элементов . И так далее...В результате выстраивается следующая бесконечная таблица:
В первой строке бесконечно много элементов из . Во второй строке бесконечно много элементов из . И так далее.Рассмотрим последовательность точек (диагональ Кантора)Очевидно, это подпоследовательность исходной последовательности. Если доказать, что она сходится в себе, то, так как — полное, у неё будет предел.Так как — замкнутое, то предел этой последовательности принадлежит ей.Рассмотрим Так как Так как есть в -й строке, то . , последовательность сходится в себе, то, по полноте , у неё есть предел. |