Числа Стирлинга второго рода — различия между версиями
Oskar (обсуждение | вклад) м (Числа Стирлинга первого рода в "см. также") |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
'''Числа Стирлинга второго рода''' (англ. ''stirling numbers of the second kind'') — количество способов разбиения множества из <tex>n</tex> элементов на <tex>k</tex> непустых подмножеств. Числа Стирлинга II рода обозначаются как <tex dpi="130">S(n,k)</tex> или <tex dpi = "180">\lbrace{n\atop k}\rbrace</tex>. | '''Числа Стирлинга второго рода''' (англ. ''stirling numbers of the second kind'') — количество способов разбиения множества из <tex>n</tex> элементов на <tex>k</tex> непустых подмножеств. Числа Стирлинга II рода обозначаются как <tex dpi="130">S(n,k)</tex> или <tex dpi = "180">\lbrace{n\atop k}\rbrace</tex>. | ||
Версия 06:27, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Числа Стирлинга второго рода (англ. stirling numbers of the second kind) — количество способов разбиения множества из элементов на непустых подмножеств. Числа Стирлинга II рода обозначаются как или .
Содержание
Пример
Существует семь способов разбиения четырехэлементного множества на две части:
Следовательно, .
Вычисление
Рекуррентное соотношение
Если задано множество из элементов, которое необходимо разбить на непустых частей, то последний элемент исходного множества можно либо поместить в отдельную часть ( способами), либо поместить его в некоторое подмножество ( способами, поскольку каждый из способов распределения первых элементов по непустым частям дает подмножеств, с которыми можно объединить последний элемент).
Таблица значений
| n\k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | |||||||||
| 1 | 0 | 1 | ||||||||
| 2 | 0 | 1 | 1 | |||||||
| 3 | 0 | 1 | 3 | 1 | ||||||
| 4 | 0 | 1 | 7 | 6 | 1 | |||||
| 5 | 0 | 1 | 15 | 25 | 10 | 1 | ||||
| 6 | 0 | 1 | 31 | 90 | 65 | 15 | 1 | |||
| 7 | 0 | 1 | 63 | 301 | 350 | 140 | 21 | 1 | ||
| 8 | 0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 | |
| 9 | 0 | 1 | 255 | 3025 | 7770 | 6951 | 2646 | 462 | 36 | 1 |
Частные случаи
Свойства
- , , где — число Стирлинга первого рода
- , где — число Белла (число всех неупорядоченных разбиений n-элементного множества)
Применения
- Пусть дано множество из элементарных исходов (все исходы равновероятны). Вероятность того, что после проведенных экспериментов каждое событие произойдет хотя бы один раз, может быть найдена по следующей формуле:
- — количество наборов из попарно непересекающихся подмножеств исходного множества . Например, , так как всего шесть наборов из двух непересекающихся подмножеств множества : .
- Обозначим как количество всех способов разбиений множества натуральных чисел на подмножеств, в которых расстояния между двумя любыми элементами , не меньше . Тогда
- Также числа Стирлинга II рода можно определить как коэффициенты в разложении обычных степеней на факториальные: , где — убывающий факториал, — возрастающий факториал. См. также связь между числами Стирлинга.
Переход от базиса обычных степеней к базису убывающих факториальных степеней
| Теорема: |
Числа Стирлинга II рода образуют матрицу переходов в линейном пространстве полиномов от базиса обычных степеней к базису убывающих факториальных степеней. |
| Доказательство: |
|
, отсюда , следовательно, есть |
См. также
Источники информации
- Wikipedia — Stirling numbers of the second kind
- OEIS
- Р. Грэхем, Д. Кнут, О. Паташник Конкретная математика. Основание информатики.—М.:Мир, 1998.—с. 288.— ISBN 5-03-001793-3