Функциональные зависимости: замыкание атрибутов, неприводимые множества функциональных зависимостей, их построение — различия между версиями
(→Построение) |
(→Замыкание атрибутов) |
||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Замыкание множества атрибутов <tex>X</tex> над множеством ФЗ <tex>S</tex> | + | Замыкание множества атрибутов <tex>X</tex> над множеством ФЗ <tex>S - </tex> максимальное по включению множество атрибутов, обозначаемое <tex>X^+_S</tex>, функционально зависящих от <tex>S</tex>. |
}} | }} | ||
Версия 14:48, 29 декабря 2020
Содержание
Замыкание атрибутов
Определение: |
Замыкание множества атрибутов | над множеством ФЗ максимальное по включению множество атрибутов, обозначаемое , функционально зависящих от .
Максимальный размер равен числу атрибутов в отношении.
Основное свойство замыкания множества атрибутов
Теорема: |
Доказательство: |
По определению замыкания атрибутов. |
Данная теорема позволяет проверять эквивалентность множеств ФЗ без вычисления замыканий ФЗ:
Даны множества и и пусть для простоты , необходимо проверить является ли эквивалентным . Для этого достаточно построить замыкание и по теореме проверить все фз из , которые отсутствуют в . Если доказать, что из выводимы все базовые правила , то их замыкания ФЗ будут совпадать, следовательно, два множества эквивалентны. Например, пусть , тогда если , то .
Утверждение: |
Следствие: - надключ - множество всех атрибутов |
- множество всех атрибутов и по теореме , то по определению функциональной зависимости соответствует ровно один и значит - надключ. |
Данное следствие позволяет формально выделять ключи и надключи.
Построение замыкания атрибутов
= X do foreach : if then while есть изменения
Теорема: |
Доказательство: |
1) |
Неприводимые множества функциональных зависимостей
Определение: |
Множество ФЗ
| неприводимо, если:
Определение: |
Множество ФЗ | минимально по вклюючению, если ни одна функциональная зависимость из множества не может быть удалена из множества без изменения его замыкания .
Теорема: |
Для любого множества ФЗ существует эквивалентное неприводимое множество ФЗ (НМФЗ). |
Доказательство: |
Доказательство по построению:
|
Оценка времени построения
- Расщепление правых частей - линейно по размеру правых частей.
- Удаление атрибута . На данном этапе из одной ФЗ возможно получить множество ФЗ минимальных по включению. Синтетическая оценка множества потенциальных множеств минимальных по включению мощностью это . То есть на ФЗ с большой левой частью возможен экспоненциальный рост количества ФЗ с минимальной по включению левой частью. Но на реальных данных большая левая часть в ФЗ практически не встречается.
- Удаление правила . На этом этапе не добавляем ФЗ, а только удаляем, поэтому сложность этот этап не добавит. Заметим, что каждую ФЗ на этом этапе можно рассматривать лишь один раз, т.к. все операции по приведению множества к неприводимому сохраняют исходное замыканиче ФЗ.
Выводы о НМФЗ
- Неприводимые множества ФЗ обычно много меньше множеств исходного множества ФЗ.
- Неприводимое множество ФЗ может не являться минимальным по мощности.