Лемма Шварца-Зиппеля — различия между версиями
Alant (обсуждение | вклад) |
Alant (обсуждение | вклад) |
||
Строка 21: | Строка 21: | ||
Для получения оценки второго слагаемого зафиксируем некоторый набор <tex> \{x_1, ..., x_{n-1}\} </tex>, для которого <tex> q_j(x_1, ..., x_{n-1}) \ne 0 </tex>. | Для получения оценки второго слагаемого зафиксируем некоторый набор <tex> \{x_1, ..., x_{n-1}\} </tex>, для которого <tex> q_j(x_1, ..., x_{n-1}) \ne 0 </tex>. | ||
Тогда для <tex> q(x_1, ... x_n) </tex> как для полинома 1 переменной степени <tex> j </tex> будет выполнено: | Тогда для <tex> q(x_1, ... x_n) </tex> как для полинома 1 переменной степени <tex> j </tex> будет выполнено: | ||
− | <tex> p(q = 0 | q_j \ne 0) p(q_j \ne 0) \le \frac{ | + | <tex> p(q = 0 | q_j \ne 0) p(q_j \ne 0) \le \frac{j}{|S|} * 1 </tex>. |
<tex> p(q = 0) \le \frac{d-j}{|S|} + \frac{j}{|S|} = \frac{d}{|S|} </tex>, что и требовалось доказать. | <tex> p(q = 0) \le \frac{d-j}{|S|} + \frac{j}{|S|} = \frac{d}{|S|} </tex>, что и требовалось доказать. |
Версия 20:49, 13 апреля 2010
Формулировка
Пусть задан полином
степени над полем , а также произвольное . Пусть также - набор независимых случайных величин, равномерно распределенных в . Тогда .Доказательство
Проведем доказательство теоремы индукцией по
.База индукции
В случае, когда
, утвержение следует из того, что произвольный полином степени над полем имеет не более чем корней.Индукционный переход
Пусть утверждение верно для всех полиномов степени
(и для всех меньших). Разложим по степеням :
Так как
, хотя бы один . Пусть . По формуле полной вероятности имеем: .Заметим, что
полином от переменных, а потому к нему применимо предположение индукции. Кроме того, . Таким образом, .Для получения оценки второго слагаемого зафиксируем некоторый набор
, для которого . Тогда для как для полинома 1 переменной степени будет выполнено: ., что и требовалось доказать.