Компьютерное зрение в микроскопии — различия между версиями
Sashapff (обсуждение | вклад) (→Определение фазы клеточного цикла) |
Sashapff (обсуждение | вклад) (→Идентификация раковых клеток) |
||
Строка 10: | Строка 10: | ||
=== Идентификация раковых клеток === | === Идентификация раковых клеток === | ||
− | Для классификации раковых клеток используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение. | + | Для классификации раковых клеток используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение, то есть модель предварительно обучается на большом объеме других данных. |
[[Файл:microscopy_cnn.png|center|600px|thumb|Архитектура сверточной нейронной сети для классификации раковых клеток из [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213626/ статьи.]]] | [[Файл:microscopy_cnn.png|center|600px|thumb|Архитектура сверточной нейронной сети для классификации раковых клеток из [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213626/ статьи.]]] | ||
− | Такая сверточная сеть лучше справляется с задачей классификации клеток по сравнению с экспертом-человеком, особенно на изображениях с недостаточно хорошим качеством. | + | Такая сверточная сеть лучше справляется с задачей классификации клеток по сравнению с экспертом-человеком, особенно на изображениях с недостаточно хорошим качеством. |
− | |||
− | |||
− | |||
== Отслеживание объектов и процессов == | == Отслеживание объектов и процессов == |
Версия 16:41, 4 января 2021
Компьютерное зрение помогает автоматизировать обработку изображений, полученных с помощью микроскопии. С появлением сверточных нейронных сетей стало возможным эффективно и с хорошей точностью классифицировать клетки, отслеживать внутриклеточные и межклеточные процессы, сегментировать полученные изображения, улучшать их качество и решать другие задачи без непосредственного участия человека.
Содержание
Задачи компьютерного зрения в микроскопии
Классификация клеток
Классификация клеток является базовой задачей биомедицины. Многообразие признаков, по которым можно делить клетки, велико, но для некоторых уже существуют готовые архитектуры сверточных нейросетей.
Определение фазы клеточного цикла
Для определения фазы клеточного цикла, в которой находится клетка, используется сверточная нейросеть, которая дает на выходе классификацию каждой клетки, а также визуализирует процесс клеточного цикла.
Особенностью работы данной нейросети является то, что необходимо разметить только небольшую часть данных, на основании чего она далее учится размечать самостоятельно.
Идентификация раковых клеток
Для классификации раковых клеток используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение, то есть модель предварительно обучается на большом объеме других данных.
Такая сверточная сеть лучше справляется с задачей классификации клеток по сравнению с экспертом-человеком, особенно на изображениях с недостаточно хорошим качеством.