Распознавание изогнутого текста — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Внесены модели)
Строка 8: Строка 8:
 
В решении задачи распознавания текста двумя основными составляющими являются определение области текста и распознавание содержимого области. В сообществе исследователей выделяют три разных вида ориентации текста - horizontal, multi-oriented, curved (усл. горизонтальная, множественная, изогнутая). Очевидно, что правильность определения области текста напрямую влияет на качество работы распознающих моделей. Долгое время распознавание изогнутого текста казалось крайне сложной задачей - до тех пор, пока не появились способы весьма точно определять контуры объектов на изображениях ([см./например] Mask R-CNN). Использование методов сегментации изображения позволяет добиться хороших результатов на существующих датасетах.
 
В решении задачи распознавания текста двумя основными составляющими являются определение области текста и распознавание содержимого области. В сообществе исследователей выделяют три разных вида ориентации текста - horizontal, multi-oriented, curved (усл. горизонтальная, множественная, изогнутая). Очевидно, что правильность определения области текста напрямую влияет на качество работы распознающих моделей. Долгое время распознавание изогнутого текста казалось крайне сложной задачей - до тех пор, пока не появились способы весьма точно определять контуры объектов на изображениях ([см./например] Mask R-CNN). Использование методов сегментации изображения позволяет добиться хороших результатов на существующих датасетах.
  
== Модели, способные распознавать изогнутый текст ==
+
== Модели и датасеты ==
Все представленные ниже модели показывают хорошие результаты, независимо от ориентации текста:
+
Датасеты, способствовавшие исследованиям в области распознавания изогнутого текста:
 +
*TotalText
 +
*SCUT-CTW1500
 +
 
 +
Модели, показывающие хорошие результаты, независимо от ориентации текста:
 
*TextFuseNet
 
*TextFuseNet
 
*CharNet H-88
 
*CharNet H-88
Строка 26: Строка 30:
 
*PSENet
 
*PSENet
 
*SLPR
 
*SLPR
 +
 +
== TotalText (2017) ==

Версия 18:13, 15 января 2021

Эта статья находится в разработке!

Распознавание текста — важная задача машинного обучения, решение которой позволит получать огромное количество информации из окружающего мира без участия человека. Распознавание изогнутого текста, в частности, одна из проблем, лежащих на пути решения данной задачи.

Людей, работающих в данном направлении, для удобства условно будем называть "исследователями".

Вступление

В решении задачи распознавания текста двумя основными составляющими являются определение области текста и распознавание содержимого области. В сообществе исследователей выделяют три разных вида ориентации текста - horizontal, multi-oriented, curved (усл. горизонтальная, множественная, изогнутая). Очевидно, что правильность определения области текста напрямую влияет на качество работы распознающих моделей. Долгое время распознавание изогнутого текста казалось крайне сложной задачей - до тех пор, пока не появились способы весьма точно определять контуры объектов на изображениях ([см./например] Mask R-CNN). Использование методов сегментации изображения позволяет добиться хороших результатов на существующих датасетах.

Модели и датасеты

Датасеты, способствовавшие исследованиям в области распознавания изогнутого текста:

  • TotalText
  • SCUT-CTW1500

Модели, показывающие хорошие результаты, независимо от ориентации текста:

  • TextFuseNet
  • CharNet H-88
  • TextCohesion
  • SA-Text
  • PAN-640
  • DB-ResNet50
  • CRAFT
  • SPCNET
  • FTSN
  • TextFilled
  • TextSnake
  • Mask TextSpotter
  • CTD+TLOC (?)
  • PAN
  • PSENet
  • SLPR

TotalText (2017)