Участник:Masha — различия между версиями
(→Формула Бержа) |
(→Формула Бержа) |
||
Строка 25: | Строка 25: | ||
2) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, множество вершин нового графа обозначим как <tex>W</tex>. Каждую вершину вспомогательного графа соединим с каждой вершиной <tex>G</tex>. Получим новый граф <tex>H \; = \; K_k + G</tex>, докажем, что для него выполнено условие Татта. Докажем, что <tex>\forall S \in V_{H}: odd(G \setminus S) \; \leq \; |S| \; </tex>. Рассмотрим <tex>S \subset V_H\;</tex>. | 2) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, множество вершин нового графа обозначим как <tex>W</tex>. Каждую вершину вспомогательного графа соединим с каждой вершиной <tex>G</tex>. Получим новый граф <tex>H \; = \; K_k + G</tex>, докажем, что для него выполнено условие Татта. Докажем, что <tex>\forall S \in V_{H}: odd(G \setminus S) \; \leq \; |S| \; </tex>. Рассмотрим <tex>S \subset V_H\;</tex>. | ||
− | Если | + | a) Если <tex>W \not\subset S</tex>, тогда посколько граф <tex>K_k</tex> полный и все его вершины связаны с каждой вершиной графа <tex>G</tex>, то граф <tex>H</tex> связный и <tex>odd(H \setminus S) = 0</tex> или <tex>odd(G \setminus S) = 1</tex>. В случае <tex>odd(H \setminus S) = 0</tex> условие очевидно выполняется т.к <tex>\forall S \in G : 0 \; \leq \; |S|</tex>. |
+ | |||
+ | |||
+ | б) Рассмотрим случай <tex>odd(H \setminus S) = 1</tex>, <tex>|V_H| = n + k = n + odd(G \setminus A) - |A|</tex>, где <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex>. Разность <tex>odd(G \setminus A) - |A|</tex> имеет ту же четность, что и <tex>n</tex>, поэтому <tex>|V_H|</tex> четно, значит, по лемме мощность <tex>S</tex> нечетна, следовательно, она не равна нулю, значит <tex> 1 \leq |S| </tex>. | ||
Если <tex>W \subset S</tex>, то <tex>odd(H \setminus S) = odd(G \setminus (S \cap V)) \leq |S \cap V| + k \leq |S| </tex>. | Если <tex>W \subset S</tex>, то <tex>odd(H \setminus S) = odd(G \setminus (S \cap V)) \leq |S \cap V| + k \leq |S| </tex>. | ||
− | Таким образом, для графа <tex>H</tex> выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе <tex>H</tex>, удалим вершины <tex>W</tex> из графа <tex>H</tex>. Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин <tex>k</tex>, значит, <tex>def(G) \leq k</tex>. Удалим множество вершин <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex> из графа <tex>G</tex>. Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на k больше нечетных компонент, чем | + | Таким образом, для графа <tex>H</tex> выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе <tex>H</tex>, удалим вершины <tex>W</tex> из графа <tex>H</tex>. Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин <tex>k</tex>, значит, <tex>def(G) \leq k</tex>. Удалим множество вершин <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex> из графа <tex>G</tex>. Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на <tex>k</tex> больше нечетных компонент, чем было удалено, значит, хотя бы <tex>k</tex> нечетных компонент содержали исходно непокрытую вершину, значит, <tex>k \leq def(G)</tex>. Значит, <tex>def(G) = k</tex>. Теорема доказана. |
}} | }} | ||
Версия 16:30, 6 июня 2021
Формула Бержа
Лемма: |
, где - граф с вершинами, |
Доказательство: |
Удалим из графа В сумме множество , получим компонент связности, содержащих вершин соответсвенно. т. к в сумме это все вершины исходного графа . Возьмем данное равенство по модулю два: число единиц равно числу нечетных компонент . Таким образом, . |
Теорема: |
Доказательство: |
2) Если , тогда рассмотрим исходный граф и полный граф с вершинами, множество вершин нового графа обозначим как . Каждую вершину вспомогательного графа соединим с каждой вершиной . Получим новый граф , докажем, что для него выполнено условие Татта. Докажем, что . Рассмотрим .a) Если, тогда посколько граф полный и все его вершины связаны с каждой вершиной графа , то граф связный и или . В случае условие очевидно выполняется т.к .
б) Рассмотрим случай, , где . Разность имеет ту же четность, что и , поэтому четно, значит, по лемме мощность нечетна, следовательно, она не равна нулю, значит . Если Таким образом, для графа , то . выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе , удалим вершины из графа . Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин , значит, . Удалим множество вершин из графа . Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на больше нечетных компонент, чем было удалено, значит, хотя бы нечетных компонент содержали исходно непокрытую вершину, значит, . Значит, . Теорема доказана. |