Участник:Masha — различия между версиями
(→Формула Бержа) |
Masha (обсуждение | вклад) |
||
Строка 21: | Строка 21: | ||
− | 1) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = 0 </tex>, тогда <tex>\forall \; S \in \; V: \; odd(G \setminus S) \leq |S| \; </tex> и выполнен критерий Татта, значит, в графе есть совершенное паросочетание, т.е. его дефицит равен нулю. | + | 1) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = 0 </tex>, тогда <tex>\forall \; S \in \; V: \; odd(G \setminus S) \leq |S| \; </tex> и выполнен [[Теорема Татта о существовании полного паросочетания|критерий Татта]], значит, в графе есть совершенное паросочетание, т.е. его дефицит равен нулю. |
2) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, множество вершин нового графа обозначим как <tex>W</tex>. Каждую вершину вспомогательного графа соединим с каждой вершиной <tex>G</tex>. Получим новый граф <tex>H \; = \; K_k + G</tex>, докажем, что для него выполнено условие Татта. Докажем, что <tex>\forall S \in V_{H}: odd(G \setminus S) \; \leq \; |S| \; </tex>. Рассмотрим <tex>S \subset V_H\;</tex>. | 2) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, множество вершин нового графа обозначим как <tex>W</tex>. Каждую вершину вспомогательного графа соединим с каждой вершиной <tex>G</tex>. Получим новый граф <tex>H \; = \; K_k + G</tex>, докажем, что для него выполнено условие Татта. Докажем, что <tex>\forall S \in V_{H}: odd(G \setminus S) \; \leq \; |S| \; </tex>. Рассмотрим <tex>S \subset V_H\;</tex>. | ||
Строка 34: | Строка 34: | ||
Таким образом, для графа <tex>H</tex> выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе <tex>H</tex>, удалим вершины <tex>W</tex> из графа <tex>H</tex>. Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин <tex>k</tex>, значит, <tex>def(G) \leq k</tex>. Удалим множество вершин <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex> из графа <tex>G</tex>. Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на <tex>k</tex> больше нечетных компонент, чем было удалено, значит, хотя бы <tex>k</tex> нечетных компонент содержали исходно непокрытую вершину, значит, <tex>k \leq def(G)</tex>. Значит, <tex>def(G) = k</tex>. Теорема доказана. | Таким образом, для графа <tex>H</tex> выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе <tex>H</tex>, удалим вершины <tex>W</tex> из графа <tex>H</tex>. Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин <tex>k</tex>, значит, <tex>def(G) \leq k</tex>. Удалим множество вершин <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex> из графа <tex>G</tex>. Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на <tex>k</tex> больше нечетных компонент, чем было удалено, значит, хотя бы <tex>k</tex> нечетных компонент содержали исходно непокрытую вершину, значит, <tex>k \leq def(G)</tex>. Значит, <tex>def(G) = k</tex>. Теорема доказана. | ||
}} | }} | ||
+ | |||
+ | ==См. также== | ||
==Источники информации== | ==Источники информации== | ||
[https://www.youtube.com/watch?v=1KggxCJZFRg {{---}} Лекция А.С. Станкевича] | [https://www.youtube.com/watch?v=1KggxCJZFRg {{---}} Лекция А.С. Станкевича] |
Версия 16:32, 6 июня 2021
Формула Бержа
Лемма: |
, где - граф с вершинами, |
Доказательство: |
Удалим из графа В сумме множество , получим компонент связности, содержащих вершин соответсвенно. т. к в сумме это все вершины исходного графа . Возьмем данное равенство по модулю два: число единиц равно числу нечетных компонент . Таким образом, . |
Теорема: |
Доказательство: |
2) Если , тогда рассмотрим исходный граф и полный граф с вершинами, множество вершин нового графа обозначим как . Каждую вершину вспомогательного графа соединим с каждой вершиной . Получим новый граф , докажем, что для него выполнено условие Татта. Докажем, что . Рассмотрим .a) Если, тогда посколько граф полный и все его вершины связаны с каждой вершиной графа , то граф связный и или . В случае условие очевидно выполняется т.к .
б) Рассмотрим случай, , где . Разность имеет ту же четность, что и , поэтому четно, значит, по лемме мощность нечетна, следовательно, она не равна нулю, значит . Если Таким образом, для графа , то . выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе , удалим вершины из графа . Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин , значит, . Удалим множество вершин из графа . Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на больше нечетных компонент, чем было удалено, значит, хотя бы нечетных компонент содержали исходно непокрытую вершину, значит, . Значит, . Теорема доказана. |