Участник:Masha — различия между версиями
Masha (обсуждение | вклад) (→Формула Бержа) |
Masha (обсуждение | вклад) (→Формула Бержа) |
||
Строка 1: | Строка 1: | ||
== Формула Бержа == | == Формула Бержа == | ||
− | {{Лемма | + | {{Лемма |
|statement= <tex>(n + |S| + odd(G \setminus S)) \; mod \; 2 = 0</tex>, где <tex>G</tex> - граф с <tex>n</tex> вершинами, <tex>S \in {V}_{G}</tex> | |statement= <tex>(n + |S| + odd(G \setminus S)) \; mod \; 2 = 0</tex>, где <tex>G</tex> - граф с <tex>n</tex> вершинами, <tex>S \in {V}_{G}</tex> | ||
|proof= | |proof= | ||
Строка 26: | Строка 26: | ||
Если <tex>W \not\subset S</tex>, тогда посколько граф <tex>K_k</tex> полный и все его вершины связаны с каждой вершиной графа <tex>G</tex>, то граф <tex>H</tex> связный и <tex>odd(H \setminus S) \; = \; 0 \;</tex> или <tex>odd(G \setminus S) \; = \; 1 \;</tex>. В случае <tex>odd(H \setminus S) \; = \; 0</tex> условие очевидно выполняется т.к <tex>\forall S \in G : 0 \; \leq \; |S|</tex>. | Если <tex>W \not\subset S</tex>, тогда посколько граф <tex>K_k</tex> полный и все его вершины связаны с каждой вершиной графа <tex>G</tex>, то граф <tex>H</tex> связный и <tex>odd(H \setminus S) \; = \; 0 \;</tex> или <tex>odd(G \setminus S) \; = \; 1 \;</tex>. В случае <tex>odd(H \setminus S) \; = \; 0</tex> условие очевидно выполняется т.к <tex>\forall S \in G : 0 \; \leq \; |S|</tex>. | ||
− | Рассмотрим случай <tex>odd(H \setminus S) \; = \; 1 \;</tex>, <tex>|V_H| \; = \; n \; + \; k \; = \; n \; + \; odd(G \setminus A) - |A|</tex>, где <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex>. Разность <tex>odd(G \setminus A) - |A|</tex> имеет ту же четность, что и <tex>n</tex>, поэтому <tex>|V_H|</tex> четно, значит, по лемме | + | Рассмотрим случай <tex>odd(H \setminus S) \; = \; 1 \;</tex>, <tex>|V_H| \; = \; n \; + \; k \; = \; n \; + \; odd(G \setminus A) - |A|</tex>, где <tex>A = arg \max\limits_{S \in V}(odd(H \setminus S) - |S|) </tex>. Разность <tex>odd(G \setminus A) - |A|</tex> имеет ту же четность, что и <tex>n</tex>, поэтому <tex>|V_H|</tex> четно, значит, по лемме, мощность <tex>S</tex> нечетна, следовательно, она не равна нулю, значит <tex> 1 \leq |S| </tex>. |
Если <tex>W \subset S \;</tex>, то <tex>odd(H \setminus S) \; = \; odd(G \setminus (S \cap V)) \; \leq \; |S \cap V| \; + \; k \leq |S| \;</tex>. | Если <tex>W \subset S \;</tex>, то <tex>odd(H \setminus S) \; = \; odd(G \setminus (S \cap V)) \; \leq \; |S \cap V| \; + \; k \leq |S| \;</tex>. |
Версия 16:46, 6 июня 2021
Формула Бержа
Лемма: |
, где - граф с вершинами, |
Доказательство: |
Удалим из графа В сумме множество , получим компонент связности, содержащих вершин соответсвенно. т. к в сумме это все вершины исходного графа . Возьмем данное равенство по модулю два: число единиц равно числу нечетных компонент . Таким образом, . |
Теорема: |
Доказательство: |
2) Если , тогда рассмотрим исходный граф и полный граф с вершинами, множество вершин нового графа обозначим как . Каждую вершину вспомогательного графа соединим с каждой вершиной . Получим новый граф , докажем, что для него выполнено условие Татта. Докажем, что . Рассмотрим .Если , тогда посколько граф полный и все его вершины связаны с каждой вершиной графа , то граф связный и или . В случае условие очевидно выполняется т.к . Рассмотрим случай , , где . Разность имеет ту же четность, что и , поэтому четно, значит, по лемме, мощность нечетна, следовательно, она не равна нулю, значит .Если Таким образом, для графа , то . выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе , удалим вершины из графа . Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин , значит, . Удалим множество вершин из графа . Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на больше нечетных компонент, чем было удалено, значит, хотя бы нечетных компонент содержали исходно непокрытую вершину, значит, . Значит, . Теорема доказана. |