Участник:Masha — различия между версиями
Masha (обсуждение | вклад) (→Формула Бержа) |
Masha (обсуждение | вклад) (→Формула Бержа) |
||
Строка 7: | Строка 7: | ||
<tex>|S|\; + \; \sum_{i=1}^{k}k_i \; = \; n \; </tex>, т. к. в сумме это все вершины исходного графа <tex>G</tex>. | <tex>|S|\; + \; \sum_{i=1}^{k}k_i \; = \; n \; </tex>, т. к. в сумме это все вершины исходного графа <tex>G</tex>. | ||
Возьмем данное равенство по модулю два: <tex>(|S|\; mod\; 2 \; + \; \sum_{i=1}^{k}(k_i \; mod \; 2)) \; mod \; 2 = n \; mod \; 2</tex> | Возьмем данное равенство по модулю два: <tex>(|S|\; mod\; 2 \; + \; \sum_{i=1}^{k}(k_i \; mod \; 2)) \; mod \; 2 = n \; mod \; 2</tex> | ||
− | В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \; 2 \; = \; n \; mod \; 2 \; </tex>. | + | В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \; 2 \; = \; n \; mod \; 2 \;</tex>. |
}} | }} | ||
Версия 16:50, 6 июня 2021
Формула Бержа
Лемма: |
, где - граф с вершинами, |
Доказательство: |
Удалим из графа В сумме множество , получим компонент связности, содержащих вершин соответственно. , т. к. в сумме это все вершины исходного графа . Возьмем данное равенство по модулю два: число единиц равно числу нечетных компонент . Таким образом, . |
Теорема: |
Доказательство: |
2) Если , тогда рассмотрим исходный граф и полный граф с вершинами, множество вершин нового графа обозначим как . Каждую вершину вспомогательного графа соединим с каждой вершиной . Получим новый граф , докажем, что для него выполнено условие Татта. Докажем, что . Рассмотрим .Если , тогда посколько граф полный и все его вершины связаны с каждой вершиной графа , то граф связный и или . В случае условие очевидно выполняется т.к . Рассмотрим случай , , где . Разность имеет ту же четность, что и , поэтому четно, значит, по лемме, мощность нечетна, следовательно, она не равна нулю, значит .Если Таким образом, для графа , то . выполнено условие Татта, следовательно, в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе , удалим вершины из графа . Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин , значит, . Удалим множество вершин из графа . Заметим, что после удаление в графе осталось несколько нечетных компонент и образовались новые непокрытые вершины, но при этом осталось на больше нечетных компонент, чем было удалено, значит, хотя бы нечетных компонент содержали исходно непокрытую вершину, значит, . Значит, . Теорема доказана. |