Исчисление доменов и его реляционная полнота — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Идентификаторы студентов, не сдавших курс с CId=10)
(Примеры запросов)
Строка 16: Строка 16:
  
 
===Примеры запросов===
 
===Примеры запросов===
 +
=====Идентификаторы всех студентов=====
 +
SId <font color=blue>where</font> S<font color=red>{</font>SId = SId<font color=red>}</font>
 
=====Идентификаторы студентов, не сдавших курс с CId=10=====
 
=====Идентификаторы студентов, не сдавших курс с CId=10=====
 
  SId <font color=blue>where</font> ¬∃Points (Points ≥ 60 ∧ Points<font color=red>{</font>SId = SId, Points = Points, CId = 10<font color=red>}</font>)
 
  SId <font color=blue>where</font> ¬∃Points (Points ≥ 60 ∧ Points<font color=red>{</font>SId = SId, Points = Points, CId = 10<font color=red>}</font>)

Версия 03:25, 13 декабря 2021

Исчисление доменов

Синтаксис

Переменная :: Тип -- Переменная может принимать значения из какого-то типа. Тип == набор значений

 -- Условие принадлежности отношению
Отношение {
  Атрибут1 = Значение1,
  Атрибут2 = Значение2,
  ...
}

Условие принадлежности

Предикат, значение которого истина тогда, когда в отношении есть кортеж с совпадающими значениями атрибутов.

S{FirstName = 'Иван', LastName = 'Иванов'}

Примеры запросов

Идентификаторы всех студентов
SId where S{SId = SId}
Идентификаторы студентов, не сдавших курс с CId=10
SId where ¬∃Points (Points ≥ 60 ∧ Points{SId = SId, Points = Points, CId = 10})

Реляционная полнота исчисления доменов

Проекция $\pi_{A_1, ..., A_n}(R)$

$A_1$, ..., $A_n$ from $R$ where $R${$A_1$ = $A_1$, ..., $A_n$ = $A_n$}

Фильтр $σ_θ(R)$

$A_1$, ..., $A_n$ from $R$ where $R${$A_1$ = $A_1$, ..., $A_n$ = $A_n$} ∧ $θ$

Переименовывание $ε_{A=expr}(R_1)$

expr as A from $R$ where $R${$A_1$ = $A_1$, ..., $A_n$ = $A_n$}

Объединение $R_1 ∪ R_2$

$A_1$, ..., $A_n$ where $R_1${$A_i$ = $A_i$} ∨ $R_2${$A_i$ = $A_i$}

Разность $R_1 ∖ R_2$

$A_1$, ..., $A_n$ where $R_1${$A_i$ = $A_i$} ∧ $¬R_2${$A_i$ = $A_i$}

Декартово произведение $R_1 × R_2$

$A_1$, ..., $A_n$, $B_1$, ..., $B_m$ where $R_1${$A_i$ = $A_i$} ∧ $R_2${$B_j$ = $B_j$}

Естественное соединение $R_1 ⋈ R_2$

$A_1$, ..., $A_n$, $B_1$, ..., $B_m$, $C_1$, ..., $C_l$ where $R_1${$A_i$ = $A_i$, $B_j$ = $B_j$} ∧ $R_2${$C_k$ = $C_k$, $B_j$ = $B_j$}