Soft-Max и Soft-Arg-Max — различия между версиями
(→Постановка задачи) |
(→Soft-Arg-Max) |
||
Строка 21: | Строка 21: | ||
*<tex>L_{i} \leqslant L_{j} \implies p_{i} \leqslant p_{j}</tex> | *<tex>L_{i} \leqslant L_{j} \implies p_{i} \leqslant p_{j}</tex> | ||
*Модель <tex>a</tex>, возвращающая <tex>L_{i}</tex>, после преобразования будет возвращать <tex>p_{i}</tex> и останется дифференцируемой. | *Модель <tex>a</tex>, возвращающая <tex>L_{i}</tex>, после преобразования будет возвращать <tex>p_{i}</tex> и останется дифференцируемой. | ||
− | + | *p = '''soft-arg-max'''<tex>\left ( L \right )</tex> | |
− | |||
<tex>y = </tex> '''soft-arg-max'''<tex>\left ( x \right )</tex>, где <tex>y_{i} = \frac{\exp\left ( x_{i} \right )}{\sum_{j}\exp\left ( x_{i} \right )}</tex> | <tex>y = </tex> '''soft-arg-max'''<tex>\left ( x \right )</tex>, где <tex>y_{i} = \frac{\exp\left ( x_{i} \right )}{\sum_{j}\exp\left ( x_{i} \right )}</tex> |
Версия 18:04, 1 июля 2022
Содержание
Soft-Arg-Max
Постановка задачи
Пусть есть задача мягкой классификации:
Алгоритм выдает значения
, где — число классов.— уверенность алгоритма в том, что объект принадлежит классу ,
Для этих значений необходимо найти такие
, что:То есть
— распределение вероятностей.Для этого выполним преобразование:
Тогда выполняется следующее:
- Модель , возвращающая , после преобразования будет возвращать и останется дифференцируемой.
- p = soft-arg-max
soft-arg-max , где
Свойства soft-arg-max
- Вычисляет по вектору чисел вектор с распределением вероятностей.
- Можно интерпретировать как вероятность нахождения максимума в -й координате.
- soft-arg-max soft-arg-max
- Предыдущее свойство используют для устойчивости вычислений. При
Модификация soft-arg-max
soft-arg-max
Данная модификация полезна, когда необходимо контролировать распределение вероятностей, получаемое soft-arg-max. Чем больше параметр
, тем больше получаемые вероятности будут похожи на равномерное распределение.Soft-Max
Плохой Soft-Max
Зададим функцию soft-max таким образом:
soft-max
soft-arg-maxГладкая аппроксимация максимума. Математическое ожидание или средневзвешенное, где веса — экспоненты значений соответствующих элементов. Сохраняет некоторые свойства максимума:
- soft-max
- soft-max soft-max
Заданный выше soft-max — "плохой" в связи с тем, что мы считаем средневзвешенное значение, которое всегда будет меньше максимума, что приведёт к проблемам с поиском максимума.
Хороший Soft-Max
soft-max
- Не сохраняет свойство soft-max
- Производная равна soft-arg-max
В этом случае сохраняется монотонность, значит, не возникнет проблем с поиском минимума и максимума.
Связь между вариациями Soft-Max
Обозначим "плохой" soft-max как bad-soft-max. Тогда:
- bad-soft-max soft-arg-max
- soft-max soft-arg-max
- soft-arg-max soft-max
Примечания
- В большинстве статей пишется soft-max, хотя вместо этого подразумевается soft-arg-max.
- soft-arg-max можно называть также как обобщённая (многомерная) сигмоида
- soft-arg-max является алгоритмом подсчёта весов для soft-max