Soft-Max и Soft-Arg-Max — различия между версиями
Betson (обсуждение | вклад) |
Betson (обсуждение | вклад) |
||
Строка 21: | Строка 21: | ||
*<tex>L_{i} \leqslant L_{j} \implies p_{i} \leqslant p_{j}</tex> | *<tex>L_{i} \leqslant L_{j} \implies p_{i} \leqslant p_{j}</tex> | ||
*Модель <tex>a</tex>, возвращающая <tex>L_{i}</tex>, после преобразования будет возвращать <tex>p_{i}</tex> и останется дифференцируемой | *Модель <tex>a</tex>, возвращающая <tex>L_{i}</tex>, после преобразования будет возвращать <tex>p_{i}</tex> и останется дифференцируемой | ||
− | *<tex>p = \mathbf{soft-arg-max}\left ( L \right )</tex> | + | *<tex>p = \mathbf{soft{-}arg{-}max}\left ( L \right )</tex> |
Пусть <tex>y = softargmax\left ( x \right )</tex>, тогда: | Пусть <tex>y = softargmax\left ( x \right )</tex>, тогда: |
Версия 19:26, 1 июля 2022
Содержание
Soft-Arg-Max
Постановка задачи
Пусть есть задача мягкой классификации:
Алгоритм выдает значения
, где — число классов.— уверенность алгоритма в том, что объект принадлежит классу ,
Для этих значений необходимо найти такие
, что:То есть
— распределение вероятностейДля этого выполним преобразование:
Тогда выполняется следующее:
- Модель , возвращающая , после преобразования будет возвращать и останется дифференцируемой
Пусть
, тогда:
У soft-arg-max такое название, так как это, по сути, гладкая аппроксимация модифицированного arg-max.
Свойства soft-arg-max
- Вычисляет по вектору чисел вектор с распределением вероятностей
- Можно интерпретировать как вероятность нахождения максимума в -й координате
- Предыдущее свойство используют для устойчивости вычислений при
Модификация soft-arg-max
soft-arg-max
Данная модификация полезна, когда необходимо контролировать распределение вероятностей, получаемое soft-arg-max. Чем больше параметр
, тем больше получаемые вероятности будут похожи на равномерное распределение.Soft-Max
Плохой Soft-Max
Зададим функцию soft-max таким образом:
Гладкая аппроксимация максимума. Математическое ожидание или средневзвешенное, где веса — экспоненты значений соответствующих элементов. Сохраняет некоторые свойства максимума:
Заданный выше soft-max — "плохой" в связи с тем, что мы считаем средневзвешенное значение, которое всегда будет меньше максимума, что приведёт к проблемам с поиском максимума.
Хороший Soft-Max
soft-max
- Не сохраняется свойство soft-max
- Производная равна soft-arg-max
В этом случае сохраняется монотонность, значит, не возникнет проблем с поиском минимума и максимума.
Связь между вариациями Soft-Max
Обозначим "плохой" soft-max как bad-soft-max. Тогда:
- bad-soft-max soft-arg-max
- soft-max soft-arg-max
- soft-arg-max soft-max
Примечания
- В большинстве статей пишется soft-max, хотя вместо этого подразумевается soft-arg-max
- soft-arg-max можно называть также как обобщённая (многомерная) сигмоида
- soft-arg-max является алгоритмом подсчёта весов для soft-max
Источники
- Лекция 7. Байесовские методы А. Забашта
- Лекция 7. Автоматическое дифференцирование и нейронные сети С. Муравьёв