Семейство универсальных попарно независимых хеш-функций — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition=<tex> H_{n, k} = \{ h | h: 2^n \to 2^k \}</tex> называется '''семейством универсальных попарно независимых хеш-функций''', если для <tex> \forall x_1, x_2 \in 2^n, x_1 \ne x_2</tex> и <tex> \forall y_1, y_2 \in 2^k</tex> и равномерной выборки функции <tex> h \in H_{n, k} </tex> будет выполнено <tex>P(h(x_1) = y_1 \land h(x_2) = y_2) = \frac{1}{2^{2k}}</tex>}} | |definition=<tex> H_{n, k} = \{ h | h: 2^n \to 2^k \}</tex> называется '''семейством универсальных попарно независимых хеш-функций''', если для <tex> \forall x_1, x_2 \in 2^n, x_1 \ne x_2</tex> и <tex> \forall y_1, y_2 \in 2^k</tex> и равномерной выборки функции <tex> h \in H_{n, k} </tex> будет выполнено <tex>P(h(x_1) = y_1 \land h(x_2) = y_2) = \frac{1}{2^{2k}}</tex>}} |
Текущая версия на 11:44, 1 сентября 2022
Определение: |
называется семейством универсальных попарно независимых хеш-функций, если для и и равномерной выборки функции будет выполнено |
Лемма: |
Для любого существует |
Доказательство: |
Рассмотрим функцию для простого , любых ,Для и, где . Раз , то можно записать следующую оценку:
|
Теорема: |
Для любых существует |
Доказательство: |
Построим следующим образом:При существование следует из леммы.При При получим переменную обрезав первые бит переменной . Тогда для переменной существует , а для - соответственно . Сперва получим . можно получить отбросив у значений хеш-функций из первые бит. |